Skip to main content
Log in

Evaluation of bamboo genetic diversity using morphological and SRAP analyses

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Bamboo is an important member of the giant grass subfamily Bambusoideae of Poaceae. In this study, 13 bamboo accessions belonging to 5 different genera were subjected to morphological evaluation and sequence-related amplified polymorphism (SRAP) analysis. Unweighted pair-group method of arithmetic averages (UPGMA) cluster analysis was used to construct a dendrogram and to estimate the genetic distances among accessions. On the basis of morphological characteristics, the 13 accessions were distinctly classified into 2 major clusters; 3 varieties, PPYX, PGNK, and PLYY were grouped as cluster A, and 10 accessions were categorized under cluster B. Similarity coefficients ranging from 0.23 to 0.96 indicated abundant genetic variation among bamboo varieties. Approximately 38 SRAP primer combinations generated 186 bands, with 150 bands (80.65%) showing polymorphisms among the 13 accessions. Based on SRAP analysis, 13 bamboo accessions were grouped into 3 major clusters. Five species comprised Cluster I (PASL, PLYY, PTSC, SCNK, and BMAK), which belongs to genus Phyllostachys. Cluster II consisted of 5 varieties, PASL, PLYY, PTSC, SCNK, and BMAK; Cluster III included 3 varieties, PGNK, PLSY, and BMRS. Comparison of the results generated by morphological and SRAP analyses showed that the classification based on SRAP markers was more concordant to the taxonomic results of Gamble than that performed using morphological characters, thus suggesting that SRAP analysis is more efficient in evaluating genetic diversity in bamboos compared to morphological analysis. The SRAP technique serves as an alternative method in assessing genetic diversity within bamboo collections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kochhar, S., Prasad, R.N., Mal, B., et al., Bamboo germplasm diversity and conservation in North East India, Ind. J. Plant Genet. Resour., 1990, vol. 3, pp. 21–36.

    Google Scholar 

  2. Wang, D.J., Shen, S.J. and San, C.U., Guatemala Bamboos of China, Portland: Timber Press, 1987.

    Google Scholar 

  3. Friar, E. and Kochert, G., Bamboo germplasm screening with nuclear restriction fragment length polymorphisms, Theor. Appl. Genet., 1991, vol. 82, pp. 697–703.

    Article  PubMed  CAS  Google Scholar 

  4. Janzen, D.H., Why bamboos wait so long to flower, Annu. Rev. Ecol. Syst., 1976, vol. 7, pp. 347–391.

    Article  Google Scholar 

  5. Wu, C.Y., The classification of Bambuseae based on leaf anatomy, Bot. Bull. Acad. Sin., 1962, vol. 3, pp. 83–108.

    Google Scholar 

  6. Friar, E. and Kochert, G., A study of genetic variation and evolution of Phyllostachys (Bambusoideae: Poaceae) using nuclear restriction fragment length polymorphisms, Theor. Appl. Genet., 1994, vol. 89, pp. 265–270.

    PubMed  CAS  Google Scholar 

  7. Lai, C.C. and Hsiao, J.Y., Genetic variation of Phyllostachys pubescens (Bambusoideae, Poaceae) in Taiwan based on DNA polymorphisms, Bot. Bull. Acad. Sin., 1997, vol. 38, pp. 145–152.

    CAS  Google Scholar 

  8. Trevor, R.H., Stephen, A.R., Grainne, N.C., et al., A Comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in Phyllostachys (Bambusoideae, Poaceae), J. Plant Res., 2000, vol. 113, pp. 259–269.

    Article  Google Scholar 

  9. Barkley, N.A., Newman, M.L., Wang, M.L., et al., Assessment of the genetic diversity and phylogenetic relationships of a temperate bamboo collection by using transferred EST-SSR markers, Genome, 2005, vol. 48, pp. 731–737.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma, R.K., Gupta, P., Sharma, V., et al., Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo, Genome, 2008, vol. 51, pp. 91–103.

    Article  PubMed  CAS  Google Scholar 

  11. Li, G. and Quiros, C.F., Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica, Theor. Appl. Genet., 2001, vol. 103, pp. 455–461.

    Article  CAS  Google Scholar 

  12. Hao, Q., Liu, Z.A., Shu, Q.Y., et al., Studies on Paeonia cultivars and hybrids identification based on SRAP analysis, Hereditas, 2008, vol. 145, pp. 38–47.

    Article  PubMed  Google Scholar 

  13. Muhammad, Y., James., A.C., Rivera-Madrid, R., et al., Musa genetic diversity revealed by SRAP and AFLP, Mol. Biotechnol., 2011, vol. 47, pp. 189–199.

    Article  CAS  Google Scholar 

  14. Osman, G., Suleyman, K., and Kazim, A., Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism, Biologia (Bratislava), 2007, vol. 62, pp. 41–45.

    Article  CAS  Google Scholar 

  15. Zhang, F., Ge, Y., Wang, W., et al., Genetic diversity and population structure of cultivated Bromeliad accessions assessed by SRAP markers, Sci. Hortic., 2012, vol. 141, pp. 1–6.

    Article  CAS  Google Scholar 

  16. Ferriol, M., Pico, B., Pascual, F.C., et al., Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers, Crop Sci., 2004, vol. 44, pp. 653–664.

    CAS  Google Scholar 

  17. Zhang, F., Chen, S., Chen, F., et al., SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium), Mol. Breed., 2011, vol. 27, pp. 11–23.

    Article  CAS  Google Scholar 

  18. Li, G., Gao, M., Yang, B., et al., Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping, Theor. Appl. Genet., 2003, vol. 107, pp. 168–180.

    Article  PubMed  CAS  Google Scholar 

  19. Guo, D.L. and Luo, Z.R., Genetic relationships of some PCNA persimmons (Diospyros kaki Thumb.) from China and Japan revealed by SRAP analysis, Genet. Resour. Crop Evol., 2006, vol. 53, pp. 1597–1603.

    Article  CAS  Google Scholar 

  20. Das, M., Bhattacharya, S., Basak, J., et al., Phylogenetic relationships among the bamboo species as revealed by morphological characters and polymorphism analyses, Biol. Plant., 2007, vol. 51, pp. 667–672.

    Article  CAS  Google Scholar 

  21. Sneath, P.H.A. and Sokal, R.R., Numerical Taxonomy: The Principles and Practice of Numerical Classification, San-Francisco: Freeman, 1973.

    Google Scholar 

  22. Rohlf, F.J., NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System: Version 2.1, Setauket: Exeter Software, 2000.

    Google Scholar 

  23. Murray, M.G. and Thompson, W.F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, pp. 4321–4326.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Wu, G.Y., Pan, H.Z., and Wu, Y., Protocols of Common Experimental Data for Biochemistry and Molecular Biology, Beijing: Science Press, 1999.

    Google Scholar 

  25. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 5269–5273.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Raizada, M.B. and Chatterjee, R.N., World distribution of bamboos with special reference to the Indian species and their more important uses, Indian For., 1956, vol. 82, pp. 215–218.

    Google Scholar 

  27. He, D.H., Lin, Z.X., Zhang, X.L., et al., Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton, Euphytica, 2005, vol. 144, pp. 141–149.

    Article  CAS  Google Scholar 

  28. Wang, G., Pan, J.S., Li, X.Z., et al., Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits, Sci. China: Life Sci., 2005, vol. 48, pp. 213–220.

    Article  CAS  Google Scholar 

  29. Ferriol, M., Pico, B., and Nuez, F., Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers, Theor. Appl. Genet., 2003, vol. 107, pp. 271–282.

    Article  PubMed  CAS  Google Scholar 

  30. Zeng, B., Zhang, X.G., Lan, Y., et al., Evaluation of genetic diversity and relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers, Can. J. Plant Sci., 2008, vol. 88, pp. 53–60.

    Article  CAS  Google Scholar 

  31. Budak, H., Shearman, R.C., Parmaksiz, I., et al., Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs, Theor. Appl. Genet., 2004, vol. 109, pp. 280–288.

    Article  PubMed  CAS  Google Scholar 

  32. Lin, Z.X., Zhang, X.L., Nie, Y.C., et al., Construction of a genetic linkage map for cotton based on SRAP, Chin. Sci. Bull., 2003, vol. 48, pp. 2064–2068.

    Google Scholar 

  33. Mutlu, N., Boyaci, F.H., Göçmen, M., and Abak, K., Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant, Theor. Appl. Genet., 2008, vol. 117, pp. 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, F., Chen, S., Chen, F., et al., Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium), Euphytica, 2011, vol. 177, pp. 15–24.

    Article  CAS  Google Scholar 

  35. Uzun, A., Yesiloglu, T., Tuzcu, O., et al., Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs), Sci. Hortic., 2009, vol. 121, pp. 306–312.

    Article  CAS  Google Scholar 

  36. Song, Z.Q., Li, X.F., Wang, H.G., et al., Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP, Genetica, 2010, vol. 138, pp. 241–249.

    Article  PubMed  CAS  Google Scholar 

  37. Ariss, J.J. and Vandemark, G.J., Assessment of genetic diversity among nondormant and semidormant alfalfa populations using sequence-related amplified polymorphisms, Crop Sci., 2007, vol. 47, pp. 2274–2284.

    Article  CAS  Google Scholar 

  38. Chang, D., Yang, F.Y., Yan, J.J., et al., SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum, from Sichuan, China, Genet. Mol. Res., 2012, vol. 11, pp. 1245–1253.

    Article  PubMed  CAS  Google Scholar 

  39. Gamble, J.S., The Bambuseae of British India, Bengal Secretariat Press, 1896.

    Google Scholar 

  40. Gielis, J., Everaert, I., and De, L.M., Analysis of genetic variability and relationships in Phyllostachys using random amplified polymorphic DNA, The Bamboos, Chapman, G., Ed., London: Academic, 1997, pp. 107–124.

    Google Scholar 

  41. Nayak, S., Rout, G.R., and Das, P., Evaluation of the genetic variability in bamboo using RAPD markers, Plant Soil Environ., 2003, vol. 49, pp. 24–28.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zhu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Liu, T., Tang, Q. et al. Evaluation of bamboo genetic diversity using morphological and SRAP analyses. Russ J Genet 50, 267–273 (2014). https://doi.org/10.1134/S1022795414030132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414030132

Keywords

Navigation