Skip to main content
Log in

Comparative cytogenetic analysis of hexaploid Avena L. species

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using C-banding method and in situ hybridizatiion with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal patterns and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of patterns of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C–17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baum, B.R., Oats: Wild and Cultivated. A Monograph of the Genus Avena L. (Poaceae), Ottawa: Thorn, 1977.

    Google Scholar 

  2. Loskutov, I.G., Species Diversity and Breeding Potential in the Genus Avena L., Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: All-Russ. Inst. Plant Industry, 2003, p. 38.

    Google Scholar 

  3. Zohary, D. and Hopf, M., Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and Nile Valley, Oxford: Clarendon, 1988.

    Google Scholar 

  4. Villaret-von Rochow, M., Avena ludoviciana Dur. im Schweizer Spaetneolithikum, ein Beitrag zur Abstaemmung des Saathafers, Ber. Deutsch. Bot. Ges., 1971, vol. 84, no. 5, pp. 243–238.

    Google Scholar 

  5. Sinskaya, E.N., Istoricheskaya geografiya kul’turnoi flory (Na zare zemledeliya) (Historical Geography of Cultivated Flora (At the Dawn of Agriculture)), Leningrad: Kolos, 1969.

    Google Scholar 

  6. Ladizinsky, G. and Zohary, D., Notes on Species Delimitation, Species Relationships, and Polyploidy in Avena L., Euphytica, 1971, vol. 20, no. 3, pp. 380–395.

    Article  Google Scholar 

  7. Mal’tsev, A.I., Ovsyugi i ovsy (Wild and Cultivated Oats), Leningrad: Izd. Vses. inst. prikladnoi botaniki i novykh kul’tur, 1930.

    Google Scholar 

  8. Rodionova, N.A., Soldatov, V.N., Merezhko, V.E., et al., Oves: Kul’turnaya flora (Oat: Cultivated Flora), Moscow: Kolos, 1994.

    Google Scholar 

  9. Zhou, X., Jellen, E.N., and Murphy, J.P., Progenitor Germplasm of Domesticated Hexaploid Oat, Crop Sci., 1999, vol. 39, no. 4, pp. 1208–1214.

    Article  Google Scholar 

  10. Sinskaya, E.N., Field Crops of the Altai, Tr. Prikladnoy Botanike Genet. Sel., 1925, vol. 24, no. 1, pp. 14–18.

    Google Scholar 

  11. Rajharthy, T. and Thomas, H., Cytogenetics of Oats (Avena L.), Misc. Publ. Genet. Soc. Can., 1974, vol. 2, pp. 1–90.

    Google Scholar 

  12. Rajharthy, T. and Dyck, P.L., Chromosomal Differentiation and Speciation in Diploid Avena: II. The Karyo-type of A. pilosa, Can. Genet. Cytol., 1963, vol. 5, no. 2, pp. 175–179.

    Google Scholar 

  13. Radjhathy, T. and Morrison, J.W., Chromosome Morphology in the Genus Avena, Can. J. Bot., 1959, vol. 37, pp. 331–337.

    Article  Google Scholar 

  14. Rajharthy, T., A Standard Karyotype for Avena sativa, Can. J. Genet. Cytol., 1963, vol. 5, no. 2, pp. 127–132.

    Google Scholar 

  15. Chen, Q. and Armstrong, K., Genomic in situ Hybridization in Avena sativa, Genome, 1994, vol. 37, no. 4, pp. 607–612.

    Article  PubMed  CAS  Google Scholar 

  16. Jellen, E.N., Gill, B.S., Cox, T.S., Genomic in situ Hybridization Detects C-Genome Chromatin and Intergenomic Translocation in Polyploidy Oat Species (Genus Avena), Genome, 1994, vol. 37, pp. 613–618.

    Article  PubMed  CAS  Google Scholar 

  17. Hayasaki, M., Morikawa, T., and Tarumoto, I., Intergenomic Translocations of Polyploid Oats (Genus Avena) Revealed by Genomic in situ Hybridization, Genes Genet. Syst., 2000, vol. 75, no. 3, pp. 167–171.

    Article  PubMed  CAS  Google Scholar 

  18. Fominaya, A., Vega, C., and Ferrer, E., C-Banding and Nucleolar Activity of Tetraploid Avena Species, Genome, 1988, vol. 30, pp. 633–638.

    Article  Google Scholar 

  19. Fominaya, A., Hueros, G., Loarce, Y., and Ferrer, E., Chromosomal Distribution of a Repeated DNA Sequence from C-Genome Heterochromatin and the Identification of a New Ribosomal DNA Locus in the Avena Genus, Genome, 1995, vol. 38, pp. 548–557.

    Article  PubMed  CAS  Google Scholar 

  20. Linares, C., Ferrer, E., and Fominaya, A., Discrimination of the Closely Related A and D Genomes of the Hexaploid Oat Avena sativa L., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 21, pp. 12450–12455.

    Article  PubMed  CAS  Google Scholar 

  21. Linares, C., Irigoyen, M.L., and Fominaya, A., Identification of C-Genome Chromosomes Involved in Intergenomic Translocations in Avena sativa L. Using Cloned Repetitive DNA Sequences, Theor. Appl. Genet., 2000, vol. 100, no. 3, pp. 353–360.

    Article  CAS  Google Scholar 

  22. Yang, Q., Hanson, L., Bennett, M.D., et al., Genome Structure and Evolution in the Allohexaploid Weed Avena fatua L. (Poaceae), Genome, 1999, vol. 42, no. 3, pp. 512–518.

    PubMed  CAS  Google Scholar 

  23. Baum, B.R., Classification of the Oat Species (Avena, Poaceae) Using Various Taximetric Methods and Information-Theoretic Model, Can. J. Bot., 1974, vol. 52, no. 11, pp. 2241–2262.

    Article  Google Scholar 

  24. Loskutov, I.G., Interspecific Crosses in the Genus Avena L., Russ. J. Genet., 2001, vol. 37, no. 5, pp. 467–475.

    Article  CAS  Google Scholar 

  25. Loskutov, I.G. and Abramova, L.I., Morphological and Karyological Inventory of Avena L. Species, Tsitologiya, 1999, vol. 41, no. 12, pp. 1069–1070.

    Google Scholar 

  26. Mal’tsev, A.I., New System of the Sectio Euavena Griseb., Byull. Prikladnoy Bot. Genet. Sel., 1929, vol. 20, pp. 127–149.

    Google Scholar 

  27. Nocelli, E., Giovannini, T., Bioni, M., et al., RFLP- and RAPD-Based Genetic Relationships of Seven Diploid Species of Avena with the A Genome, Genome, 1999, vol. 42, no. 5, pp. 950–959.

    PubMed  CAS  Google Scholar 

  28. Drossou, A., Katsiotis, A., Leggett, J.M., et al., Genome and Species Relationships in Genus Avena Based on RAPD and AFLP Molecular Markers, Theor. Appl. Genet., 2004, vol. 109, no. 1, pp. 48–54.

    Article  PubMed  CAS  Google Scholar 

  29. Paczos-Grzeda, E., Pedigree, RAPD and Simplified AFLP-Based Assessment of Genetic Relationships among Avena sativa L. Cultivars, Euphytica, 2004, vol. 138, no. 1, pp. 13–22.

    Article  CAS  Google Scholar 

  30. Fu, Y.-B. and Williams, D., AFLP Variation in 25 Avena Species, Theor. Appl. Genet., 2008, vol. 117, no. 3, pp. 333–342.

    Article  PubMed  CAS  Google Scholar 

  31. Nikoloudakis, N., Skaracis, G., and Katsiotis, A., Evolutionary Insights Inferred by Molecular Analysis of the ITS1-5.8S-ITS2 and IGS Avena sp. Sequences, Mol. Phyl. Evol., 2008, vol. 46, no. 1, pp. 102–115.

    Article  CAS  Google Scholar 

  32. Li, W.-T., Peng, Y.-Y., Wei, Y.-M., et al., Relationships among Avena Species as Revealed by Consensus Chloroplast Simple Sequence Repeat (ccSSR) Markers, Genet. Res. Crop Evol., 2009, vol. 56, no. 4, pp. 465–480.

    Article  CAS  Google Scholar 

  33. Rajhathy, T, The Chromosomes of Avena, Chromosome Engineering in Plants: Genetics, Breeding, Evolution, Gupta, P.K., and Tsuchiya, T., Eds., Elsevier, 1991, part A, pp. 449–467.

  34. Dilkova, M., Jellen, E.N., and Forsberg, R.A., C-Banded Karyotypes and Meiotic Abnormalities in Germplasm Derived from Interploidy Crosses in Avena, Euphytica, 2000, vol. 111, no. 3, pp. 175–184.

    Article  Google Scholar 

  35. Jellen, E.N. and Beard, J., Geographical Distribution of a Chromosome 7C and 17 Intergenomic Translocation in Cultivated Oat, Crop Sci., 2000, vol. 40, no. 1, pp. 256–263.

    Article  Google Scholar 

  36. Jellen, E.N., Philipps, G., and Rines, H.W., C-Banded Karyotypes and Polymorphisms in Hexaploid Oat Accessions (Avena sativa) Using Wright’s Stain, Genome, 1993, vol. 36, no. 6, pp. 1129–1137.

    Article  PubMed  CAS  Google Scholar 

  37. Jellen, E.N., Rines, H.W., Fox, S.L., et al., Characterization of ’sun II’ Oat Monosomics through C-Banding and Identification of Eight New ’sun II’ Monosomics, Theor. Appl. Genet., 1997, vol. 95, no. 8, pp. 1190–1195.

    Article  Google Scholar 

  38. Jellen, E.N., Rooney, W.L., Philipps, G., et al., Characterization of the Hexaploid Oat Avena byzantine cv. Kanota Monosomic Series Using C-Banding and RFLPs, Genome, 1993, vol. 36, no. 5, pp. 962–970.

    Article  PubMed  CAS  Google Scholar 

  39. Linares, C., Vega, C., Ferrer, E., et al., Identification of C-Banded Chromosomes in Meiosis and the Analysis of Nucleolar Activity in Avena byzantine C. Koch cv. “Kanota”, Theor. Appl. Genet., 1992, vol. 83, no. 5, pp. 650–654.

    Article  Google Scholar 

  40. Mitchell, C.C., Parkinson, S.E., Baker, T.J., et al., C-Banding and Localization of 18S-5.8S-26S rDNA in Tall Oatgrass Species, Crop Sci., 2003, vol. 43, no. 1, pp. 32–36.

    Article  CAS  Google Scholar 

  41. Rooney, W.L., Jellen, E.N., Phillips, R.L., et al., Identification of Homoeologous Chromosomes in Hexaploid Oat (A. byzantine cv. Kanota) Using Monosomics and RFLP Analysis, Theor. Appl. Genet., 1994, vol. 89, nos. 2–3, pp. 329–335.

    CAS  Google Scholar 

  42. Gupta, P.K., Giband, M., and Altosaar, I., Two Molecular Probes Characterizing the A and C Genomes in the Genus Avena (Oats), Genome, 1992, vol. 35, no. 5, pp. 916–920.

    Article  CAS  Google Scholar 

  43. Linares, C., Gonzalez, J., Ferrer, E., et al., The Use of Double Fluorescence in situ Hybridization to Physically Map the Position of 5S rDNA Genes in Relation to the Chromosomal Location of 18S-5.8S-26S rDNA and a C Genome Specific DNA Sequence in the Genus Avena, Genome, 1996, vol. 39, pp. 535–542.

    Article  PubMed  CAS  Google Scholar 

  44. Irigoyen, M.L., Linares, C., Ferrer, E., and Fominaya, A., Fluorescence in situ Hybridization Mapping of Avena sativa L. cv. SunII and Its Monosomic Lines Using Cloned Repetitive DNA Sequences, Genome, 2002, vol. 45, no. 6, pp. 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  45. Badaeva, E.D., Badaev, N.S., Gill, B.S., et al., Intraspecific Karyotype Divergence in Triticum araraticum (Poaceae), Plant Syst. Evol., 1994, vol. 192, nos. 1–2, pp. 117–145.

    Article  Google Scholar 

  46. Gerlach, W.L. and Bedbrook, J.R., Cloning and Characterization of Ribosomal RNA Genes from Wheat and Barley, Nucl. Acids Res., 1979, vol. 7, no. 7, pp. 1869–1885.

    Article  PubMed  CAS  Google Scholar 

  47. Gerlach, W.L. and Dyer, T.A., Sequence Organization of the Repeated Units in the Nucleus of Wheat Which Contains 5S-rRNA Genes, Nucl. Acids Res., 1980, vol. 8, no. 21, pp. 4851–4865.

    Article  PubMed  CAS  Google Scholar 

  48. Badaeva, E.D., Friebe, B., and Gill, B.S., Genome Differentiation in Aegilops: 1. Distribution of Highly Repetitive DNA Sequences on Chromosomes of Diploid Species, Genome, 1996, vol. 39, no. 2, pp. 293–306.

    Article  PubMed  CAS  Google Scholar 

  49. Fominaya, A., Vega, C., and Ferrer, E., C-Banding and Nucleolar Activity of Tetraploid Avena Species, Genome, 1988, vol. 30, pp. 633–638.

    Article  Google Scholar 

  50. Badaeva, E.D., Loskutov, I.G., Shelukhina, O.Yu., and Pukhalsky, V.A., Cytogenetic Analysis of Diploid Avena L. Species Containing the As Genome, Russ. J. Genet., 2005, vol. 41, no. 12, pp. 1428–1433.

    Article  CAS  Google Scholar 

  51. Badaeva, E.D., Shelukhina, O.Y., Diederichsen, A., et al., Comparative Cytogenetic Analysis of Avena macrostachya and Diploid C-Genome Avena Species, Genome, 2010, vol. 53, no. 2, pp. 125–137.

    Article  PubMed  CAS  Google Scholar 

  52. Li, C.-D., Rossnagel, B.G., and Scoles, G.J., Tracing the Phylogeny of the Hexaploid Oat Avena sativa with Satellite DNAs, Crop Sci., 2000, vol. 40, no. 6, pp. 1755–1763.

    Article  CAS  Google Scholar 

  53. Portyanko, V.A., Hoffman, D.L., Lee, M., et al., A Linkage Map of Hexaploid Oat Based on Grass Anchor DNA Clones and Its Relationship to Other Oat Map, Genome, 2001, vol. 44, no. 2, pp. 249–265.

    Article  PubMed  CAS  Google Scholar 

  54. Shelukhina, O.Yu., Badaeva, E.D., Loskutov, I.G., and Pukhalsky V.A., A Comparative Cytogenetic Study of the Tetraploid Oat Species with the A and C Genomes: Avena insularis, A. magna, and A. murphi, Russ. J. Genet., 2007, vol. 43, no. 6, pp. 613–626.

    Article  CAS  Google Scholar 

  55. Jellen, E.N. and Ladizinsky, G., Giemsa C-Banding in Avena insularis Ladizinsky, Genet. Res. Crop Evol., 2000, vol. 47, no. 3, pp. 227–230.

    Article  Google Scholar 

  56. Fominaya, A., Vega, P., and Ferrer, E., Giemsa C-Banded Karyotypes of Avena Species, Genome, 1988, vol. 30, pp. 627–632.

    Article  Google Scholar 

  57. Mal’tsev, A.I., Ovsyugi i ovsy section Euavena (Wild and Cultivated Oats of the Section Euavena), in Trudy po prikladnoi botanike, genetike i selektzii, suppl. 38, 1930.

  58. Thomas, H., New Species of Avena, Proc. 3rd Int. Oat Conf., (Lund, 1988), Mattson, B. and Svalof, L.R.V., Eds., Lund, 1989, pp. 18–23.

  59. Leggett, J.M. and Markhand, G.S., The Genomic Identification of Some Monosomics of Avena sativa L. cv. Sun-II Using Genomic in situ Hybridization, Genome, 1995, vol. 38, no. 4, pp. 747–751.

    Article  PubMed  CAS  Google Scholar 

  60. Gill, B.S. and Chen, P.D., Role of Cytoplasm-Specific Introgression in the Evolution of the Polyploid Wheats, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 19, pp. 6800–6804.

    Article  PubMed  CAS  Google Scholar 

  61. Leggett, J.M. and Markland, G.S., The Genomic Structure of Avena Revealed by GISH, Proc. Kew Chromosome Conference IV, Brandham, P.E. and Bennett, M.D., Eds., Kew: Royal Botanical Gardens, 1995, pp. 133–139.

    Google Scholar 

  62. Ladizinsky, G., A New Species of Avena from Sicily, Possibly the Tetraploid Progenitor of Hexaploid Oats, Genet. Resour. Crop Evol., 1998, vol. 45, no. 3, pp. 263–269.

    Article  Google Scholar 

  63. Leggett, J.M., Morphology and Metaphase Chromosome Pairing in Three Avena Hybrids, Can. J. Genet. Cytol., 1984, vol. 26, no. 6, pp. 641–645.

    Google Scholar 

  64. Peng, Y.-Y., Wei, Y.-M., Baum, B.R., et al., Molecular Diversity of the 5S rRNA Gene and Genomic Relationships in the Genus Avena (Poaceae: Aveneae), Genome, 2008, vol. 51, no. 2, pp. 137–154.

    Article  PubMed  CAS  Google Scholar 

  65. Nikoloudakis, N. and Katsiotis, A., The Origin of the C-Genome and Cytoplasm of Avena Polyploids, Theor. Appl. Genet., 2008, vol. 117, no. 2, pp. 273–281.

    Article  PubMed  CAS  Google Scholar 

  66. Comai, L., Genetic and Epigenetic Interactions in Allopolyploid Plants, Plant Mol. Biol., 2000, vol. 43, no. 2, pp. 387–399.

    Article  PubMed  CAS  Google Scholar 

  67. Feldman, M. and Levy, A.A., Allopolyploidy-a Shaping Force in the Evolution of Wheat Genomes, Cytogenet. Genome Res., 2005, vol. 109, nos. 1–3, pp. 250–258.

    Article  PubMed  CAS  Google Scholar 

  68. Feldman, M., Liu, B., Segal, G., et al., Rapid Elimination of Low-Copy DNA Sequences in Polyploid Wheat: A Possible Mechanism for Differentiation of Homoeologous Chromosomes, Genetics, 1997, vol. 147, no. 3, pp. 1381–1387.

    PubMed  CAS  Google Scholar 

  69. Hanson, R.E., Islam-Faridi, M.N., Crane, C.F., et al., Ty1-Copia-Retrotransposon Behavior in a Polyploid Cotton, Chrom. Res., 2000, vol. 8, no. 1, pp. 73–76.

    Article  PubMed  CAS  Google Scholar 

  70. Ozkan, H., Levy, A.A., and Feldman, M., Allopolyploidy-Induced Rapid Genome Evolution in the Wheat (Aegilops-Triticum) Group, Plant Cell, 2001, vol. 13, no. 8, pp. 1735–1747.

    Article  PubMed  CAS  Google Scholar 

  71. Zhao, X.P., Si, Y., Hanson, R.E., et al., Dispersed Repetitive DNA Has Spread to New Genomes Since Polyploid Formation in Cotton, Genome Res., 1998, vol. 8, no. 5, pp. 479–492.

    PubMed  CAS  Google Scholar 

  72. Jellen, E.N., Phillips, R.L., and Rines, H.W., Chromosomal Localization and Polymorphisms of Ribosomal DNA in Oat (Avena ssp.), Genome, 1994, vol. 37, no. 1, pp. 23–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Badaeva.

Additional information

Original Russian Text © E.D. Badaeva, O.Yu. Shelukhina, O.S. Dedkova, I.G. Loskutov, V.A. Pukhalskyi, 2011, published in Genetika, 2011, Vol. 47, No. 6, pp. 783–795.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badaeva, E.D., Shelukhina, O.Y., Dedkova, O.S. et al. Comparative cytogenetic analysis of hexaploid Avena L. species. Russ J Genet 47, 691–702 (2011). https://doi.org/10.1134/S1022795411060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411060068

Keywords

Navigation