Skip to main content
Log in

Meiotic restitution in amphihaploids in the tribe Triticeae

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In haploid and diploid organisms of the plant kingdom, meiotic division of diploid cells proceeds in two consecutive stages, with DNA replicating only once. In amphihaploids (interspecific or intergeneric hybrids), where homologs are absent, the reduction of the chromosome number does not occur, meiosis is abnormal, and the plants are sterile. Gamete viability in F1 hybrids is ensured by a single division when chromosomes are separated into sister chromatids in either the first or the second division. Such gametes ensure partial fertility of amphihaploids, thereby facilitating their survival and stabilization of the polygenome. The frequency of the formation of viable gametes varies from a few cases to 98.8% in different anthers of the hybrids. Here, studies on the cytological mechanisms and genetic control of chromosome unreduction or restitution in different amphihaploids of the tribe Triticeae are reviewed. The current notions on the control of formation of restitution nuclei based on the principles of a prolonged metaphase I and different types of meiocytes. The main terms used for systematization of restitution mechanisms are first-division restitution (FDR), single-division meiosis (SDM), and unreductional meiotic cell division (UMCD). It has been assumed that archesporial cells of wide hybrids may have two cell division programs, the meiotic and the mitoyic ones The possible approaches to the analysis of the genetic control of chromosome restitution in amphihaploids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jack, T., Plant Development Going MADS, Plant. Mol. Biol., 2001, vol. 46, pp. 515–520.

    Article  PubMed  CAS  Google Scholar 

  2. Wilson, Z.A. and Yang, C., Plant Gametogenesis: Conservation and Contrasts in Development, Reproduction, 2004, vol. 128, pp. 483–492.

    Article  PubMed  CAS  Google Scholar 

  3. Raven, P., Evert, R., and Eichhorn, S., Biology of Plants, New York: Freeman, 1986, 4th ed.

    Google Scholar 

  4. Roeder, G.S., Meiotic Chromosomes: It Takes Two to Tango, Genes Dev., 1997, vol. 11, pp. 2600–2621.

    Article  PubMed  CAS  Google Scholar 

  5. Bogdanov, Yu.F., Variation and Evolution of Meiosis, Russ. J. Genet., 2003, vol. 39, no. 4, pp. 453–473.

    Article  Google Scholar 

  6. Heywood, P. and Magee, P., Meiosis in Protists: Some Structural and Physiological Aspects of Meiosis in Algae, Fungi and Protozoa, Bacteriol. Rev., 1976, vol. 40, no. 1, pp. 190–240.

    PubMed  CAS  Google Scholar 

  7. Wagenaar, E.B., Meiotic Restitution and the Origin of Polyploidy: I. Influence of Genotype on Polyploid Seedset in a Triticum crassum × Triticum turgidum Hybrid, Can. J. Genet. Cytol., 1968a, vol. 10, pp. 836–843.

    Google Scholar 

  8. Shamina, N.V., Anomalies of Cytoskeleton and Meiotic Restitution in Higher Plants, Tsitologiya, 2005, vol. 47, no. 8, pp. 692–697.

    CAS  Google Scholar 

  9. Karpechenko, G.D., Izbrannye trudy (Selected Works), Moscow: Nauka, 1971.

    Google Scholar 

  10. Aase, H.C., Cytology of Triticum, Secale, and Aegilops Hybrids with Reference to Phylogeny, Res. Stud. State Coll. Wash., 1930, vol. 2, pp. 5–60.

    Google Scholar 

  11. Sapegin, L.A., Genes of Reduction Division, Tr. Prikladnoy Botanike, Genet. Selektsii, 1933, ser. 2, no. 5, p. 5.

  12. Vakar, B.A., Cytological Study of T. vulgare × Ag. glaucum, Izv. Akad. Nauk SSSR, Ser. Biol., 1938, pp. 597–626.

  13. Wagenaar, E.B., Meiotic Restitution and the Origin of Polyploidy: II. Prolonged Duration of Metaphase I as Causal Factor of Restitution Induction, Can. J. Genet. Cytol., 1968b, vol. 10, pp. 844–852.

    Google Scholar 

  14. Islam, A.K.M.R. and Shepherd, K.W., Meiotic Restitution in Wheat-Barley Hybrids, Chromosoma, 1980, vol. 79, pp. 363–372.

    Article  Google Scholar 

  15. Potapova, T.A. and Shchapova, A.I., Meiosis in Fertile Wheat-Wheatgrass Polyhaploids, Tsitologiya, 1989, vol. 31, no. 1, pp. 108–110.

    Google Scholar 

  16. Potapova, T.A., Genetic Determination of Viable Gametes Formation in Intergeneric Grass Hybrids, Cand. Sci. (Biol.) Dissertation, Novosibirsk: Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 1999, p. 192.

    Google Scholar 

  17. Orlova, I.N., Cytological Mechanisms of Diploid Microspore Formation in Grass Hybrids, Tsitologiya, 1988, vol. 30, no. 8, pp. 943–948.

    Google Scholar 

  18. Xu, S.J. and Dong, Y., Fertility and Meiotic Mechanisms of Hybrids between Chromosome Autoduplication Tetraploid Wheats and Aegilops Species, Genome, 1992, vol. 35, pp. 379–384.

    Google Scholar 

  19. Xu, S.J. and Joppa, L.R., Mechanisms and Inheritance of First Division Restitution in Hybrids of Wheat, Rye, and Aegilops squarrosa, Genome, 1995, vol. 38, pp. 607–615.

    PubMed  CAS  Google Scholar 

  20. Xu, S.J. and Joppa, L.R., First Division Restitution in Hybrids of Langdon Durum Disomic Substitution Lines with Rye and Aegilops squarrosa, Plant Breed., 2000, vol. 119, pp. 233–241.

    Article  Google Scholar 

  21. Potapova, T.A., Shchapova, A.I., and Kravtsova, L.A., Overcoming Sterility in Intergeneric Hybrids, in Kharakteristika genoma nekotorykh vidov sel’skokhozyaistvennykh rastenii (Genome Characteristic of Some Agricultural Plant Species), Novosibirsk: SB RAS, 1990, pp. 170–178.

    Google Scholar 

  22. Silkova, O.G., Shchapova, A.I., and Kravtsova, L.A., Mechanisms of Meiotic Restitution and Their Genetic Regulation in Wheat-Rye Polyhaploids, Russ. J. Genet., 2003, vol. 39, no. 11, pp. 1271–1280.

    Article  CAS  Google Scholar 

  23. Fukuda, K. and Sakamoto, S., Cytological Studies on Unreduced Male Gamete Formation on Hybrids between Tetraploid Emmer Wheats and Aegilops squarrosa L., Jpn. J. Breed., 1992, vol. 42, pp. 255–266.

    Google Scholar 

  24. Shamina, N.V., Silkova, O.G., and Seriukova, E.G., Monopolar Spindlers in Meiosis of Intergeneric Cereal Hybrids, Cell Biol. Int., 2003, vol. 27, pp. 657–664.

    Article  PubMed  CAS  Google Scholar 

  25. Maan, S.S. and Sasakuma, T., Fertility of Amphihaploids in Triticinae, J. Hered., 1977, vol. 57, pp. 76–83.

    Google Scholar 

  26. Shchapova, A.I., Potapova, T.A., and Kravtsova, L.A., Genetic Determination of Meiotic Chromosome Nonsegregation during Meiosis in Wheat-Rye Polyhaploids, Genetika (Moscow), 1987, vol. 23, no. 3, pp. 473–481.

    Google Scholar 

  27. Shchapova, A.I., Potapova, T.A., and Kravtsova, L.A., Causes of the Absence of Chromosome Number Reduction in Gametes of the Wheat-Rye Polyhaploids, Tsitologiya, 1987, vol. 29, no. 7, pp. 838–840.

    Google Scholar 

  28. Shchapova, A.I., Potapova, T.A., and Kravtsova, L.A., Variation in Meiotic Patterns and Pollen Fertility of the Wheat-Rye Polyhaploids, Cereal. Res. Comm., 1985, vol. 3, pp. 125–132.

    Google Scholar 

  29. Matsuoka, Y. and Nasuda, S., Durum Wheat as Candidate for the Unknown Female Progenitor of Bread Wheat: An Empirical Study with a Highly Fertile F1 Hybrid with Aegilops tauschii Coss., Theor. Appl. Genet., 2004, vol. 109, pp. 1710–1717.

    Article  PubMed  Google Scholar 

  30. Zhang, L., Yen, Y., Zheng, Y., and Liu, D., Meiotic Restriction in Emmer Wheat Is Controlled by One or More Nuclear Genes That Continue to Function in Derived Line, Sex. Plant Reprod., 2007, vol. 20, pp. 159–166.

    Article  Google Scholar 

  31. Zhang, L., Chen, Q., Yuan, Z., et al., Production of Aneuhaploid and Euhaploid Sporocytes by Meiotic Restitution in Fertile Hybrids between Durum Wheat Langdon Chromosome Substitution Lines and Aegilops tauschii, J. Genet. Genomics, 2008, vol. 35, pp. 617–623.

    Article  PubMed  Google Scholar 

  32. Shchapova, A.I., Dudarev, A.N., and Gordei, G.M., Meiosis of Partly Fertile Wheat-Rye Polyhaploids, Tsitologiya, 1989, vol. 31, no. 5, pp. 592–594.

    Google Scholar 

  33. Stefani, A., Unreduced Gametes in the F1 Hybrid of Triticum durum Desf. × Haynaldia villosa Schur., J. Plant Breed., 1986, vol. 96, pp. 8–14.

    Google Scholar 

  34. Ramanna, M.S., The Origin of Unreduced Microspores Due to Aberrant Cytokinesis in the Meiocytes of Potato and Its Genetic Significance, Euphytica, 1974, vol. 23, pp. 20–30.

    Article  Google Scholar 

  35. Ramanna, M.S., A Re-Examination of the Mechanisms of 2n Gamete Formation in Potato and Its Implications for Breeding, Euphytica, 1979, vol. 28, pp. 537–561.

    Article  Google Scholar 

  36. Ramanna, M.S. and Jacobsen, E., Relevance of Sexual Polyploidization for Crop Improvement—A Review, Euphytica, 2003, vol. 133, pp. 3–18.

    Article  Google Scholar 

  37. Cai, X., Xu, S.S., and Zhu, X., Mechanism of Haploidy-Dependent Meiotic Cell Division of Polyploid Wheat, Chromosoma, 2010, vol. 119, pp. 275–285.

    Article  PubMed  Google Scholar 

  38. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., The Effect of the Genotypic Diversity of Hordeum vulgare L. and Triticum aestivum L. on the Crossability and Production of Partially Fertile Barley-Wheat Hybrids, Russ. J. Genet., 1998, vol. 34, no. 10, pp. 1156–1163.

    CAS  Google Scholar 

  39. Balatero, C.H. and Darvey, N.L., Influence of Selected Wheat and Rye Genotypes on the Direct Synthesis of Hexaploid Triticale, Euphytica, 1993, vol. 66, pp. 179–185.

    Article  Google Scholar 

  40. Fukuda, K. and Sakamoto, S., Studies on the Factors Controlling the Formation of Unreduced Gametes in Hybrids between Tetraploid Emmer Wheats and Aegilops squarrosa L., Jpn. J. Breed., 1992, vol. 42, pp. 747–760.

    Google Scholar 

  41. Silkova, O.G. and Dobrovolskaya, O.B., Dubovets, N.I., et al., Production of Wheat-Rye Substitution Lines and Identification of Chromosome Composition of Karyotypes Using S-Banding, GISH, and SSR Markers, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 645–656.

    Article  CAS  Google Scholar 

  42. Silkova, O.G., Shchapova, A.I., and Shumnyi, V.K., Role of Rye Chromosome 2R from Wheat-Rye Substitution Line 2R(2D)1 (Triticum aestivum L. cv. Saratovskaya 29 / Secale cereal L. cv. Onokhoiskaya) in Genetic Regulation of Meiotic Restitution in Wheat-Rye Polyhaploids, Russ. J. Genet., 2007, vol. 43, no. 7, pp. 805–814.

    Article  CAS  Google Scholar 

  43. Silkova, O.G., Shchapova, A.I., and Shumnyi, V.K., Patterns of Meiosis in ABDR Amphihaploids Depend on the Specific Type of Univalent Chromosome Division, Euphytica, 2011, doi: 10.1007/s10681-010-0325-6.

  44. Silkova, O.G., Dobrovolskaya, O.B, Shchapova, A.I., and Shumnyi, V.K., Features of the Regulation of Meiotic Restitution in Androgenic Haploids of Wheat—Rye Substitution Lines 2R(2D)1, 2R(2D)3, and 6R(6A) (Triticum aestivum L., Cultivar Saratovskaya 29 / Secale cereal L., Cultivar Onokhoiskaya), Russ. J. Genet., 2009, vol. 45, no. 9, pp. 1063–1066.

    Article  Google Scholar 

  45. Consiglio, F., Carputo, D., Monti, L., and Conicella, C., Exploitation of Genes Affecting Meiotic Non-Reduction and Nuclear Restitution: Arabidopsis as a Model?, Sex. Plant Reprod., 2004, vol. 17, pp. 97–105.

    Article  Google Scholar 

  46. Agashe, B., Prasad, C.K., and Siddiqi, I., Identification and Analysis of DYAD: A Gene Required for Meiotic Chromosome Organization and Female Meiotic Progression in Arabidopsis, Development, 2002, vol. 129, pp. 3935–3943.

    PubMed  CAS  Google Scholar 

  47. Mercier, R., Vezon, D., Bullier, E., et al., SWITCH1 (SWI1): A Novel Protein Required for the Establishment of Sister Chromatid Cohesion and for Bivalent Formation at Meiosis, Genes Dev., 2001, vol. 15, pp. 1859–1871.

    Article  PubMed  CAS  Google Scholar 

  48. Golubovskaya, I.N. and Mashnenkov, A.S., Genetic Control of Meiosis: I. Meiotic Mutation in Maize (Zea mays L.) afd, Causing the Elimination of the First Meiotic Division, Genetika (Moscow), 1975, vol. 21, no. 7, pp. 11–17.

    Google Scholar 

  49. Golubovskaya, I.N., Hamant, O., Timofejeva, L., et al., Alleles of afd1 Dissect rec8 Functions during Meiotic Prophase I, J. Cell Sci., 2006, vol. 119, pp. 3306–3315.

    Article  PubMed  CAS  Google Scholar 

  50. Hamant, O., Golubovskaya, I., Meeley, R., et al., A REC8-Dependent Plant Shugoshin Is Required for Maintenance of Centromeric Cohesion during Meiosis and no Mitotic Functions, Curr. Biol., 2005, vol. 15, pp. 948–954.

    Article  PubMed  CAS  Google Scholar 

  51. Golubovskaya, I., Grebennikova, Z.K., Avalkina, N.A., et al., The Role of the ameiotic1 Gene in the Initiation of Meiosis and in Subsequent Meiotic Events in Maize, Genetics, 1993, vol. 135, pp. 1151–1166.

    PubMed  CAS  Google Scholar 

  52. Golubovskaya, I., Avalkina, N., and Sheridan, W.F., New Insights into the Role of the Maize ameiotic1 Locus, Genetics, 1997, vol. 147, pp. 1339–1350.

    PubMed  CAS  Google Scholar 

  53. Pawlowski, W.P., Wang, C.R., Golubovskaya, I.N., et al., Maize AMEIOTIC1 Is Essential for Multiple Early Meiotic Processes and Likely Required for the Initiation of Meiosis, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 3603–3608.

    Article  PubMed  CAS  Google Scholar 

  54. d’Erfurth, I., Jolivet, S., Froger, N., et al., Turning Meiosis to Mitosis, PLoS Biol., 2009, vol. 7, e1000124. doi: 10.1371/journal.pbio. 1000124.

    Article  PubMed  Google Scholar 

  55. d’Erfurth, I., Cromer, L., Jolivet, S., et al., The CYCLIN-A CYCA1;2/TAM Is Required for the Meiosis I to Meiosis II Transition and Cooperates with OSD1 for the Prophase to First Meiotic Division Transition, PLoS Genet., 2010, vol. 6, e1000989. doi:10.1371/journal.pgen.1000989.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Silkova.

Additional information

Original Russian Text © O.G. Silkova, A.I. Shchapova, V.K. Shumny, 2011, published in Genetika, 2011, Vol. 47, No. 4, pp. 437–448.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silkova, O.G., Shchapova, A.I. & Shumny, V.K. Meiotic restitution in amphihaploids in the tribe Triticeae. Russ J Genet 47, 383–393 (2011). https://doi.org/10.1134/S1022795411040120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411040120

Keywords

Navigation