Skip to main content
Log in

Response of Triticum aestivum to boron stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Despite the demonstration that proline accumulation and gene expression of Δ1-pyrroline-5-carboxylate synthase (p5cS) increased under osmotic stress, the impact of excess boron on proline metabolism is not well known. Therefore, we investigated the effect of different boron concentrations (10, 50, 70, 140 and 200 ppm) on seedlings root growth, lipid peroxidation rate, antioxidant enzyme activity (glutathione reductase (GR), ascorbate peroxidase (APX), catalase (CAT)), proline accumulation and transcription level of p5cS gene in Triticum aestivum L. AK-702. It was observed that seed germination and root growth in T. aestivum decreased depending on the concentration of boron. Our results indicated that boron toxicity induced lipid peroxidation and decreased GR activity under a high concentration of boron. However, the APX activity did not significantly change under high concentrations of boron (70, 140 and 200 ppm), while it increased under the lower levels of boron (10 and 50 ppm). In addition, excess boron enhanced CAT activity in the 200 ppm boron treated groups. Proline accumulation increased 2.25 and 1.45 fold in the 140 and 200 ppm boron applications. In addition, analyses of the mRNA transcription level using the semi-quantitative RTPCR results showed that excess boron increased the p5cS mRNA transcript levels and showed a positive correlation of these levels with proline accumulation in T. aestivum roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

GR:

glutathione reductase

MDA:

malondialdehyde

POX:

peroxidase

p5cS-Δ1 :

pyrroline-5-carboxylate synthase

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substances

References

  1. Zohary, D., Hopf, M., and Weiss, E., Domestication of Plants in the Old World, Oxford: Clarendon, 2012.

    Book  Google Scholar 

  2. Erekul, O., Kautz, T., Ellmer, F., and Turgu, I., Yield and bread-making quality of different wheat (Triticum aestivum L.) genotypes grown in Western Turkey, Arch. Agron. Soil Sci., 2009, vol. 55, pp. 169–182.

    Article  Google Scholar 

  3. Eraslan, F., Inal, A., Savasturk, O., and Gunes, A., Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity, Sci. Hort., 2007, vol. 114, pp. 5–10.

    Article  CAS  Google Scholar 

  4. Karabal, E., Yücel, M., and Öktem, H.A., Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity, Plant Sci., 2003, vol. 164, pp. 925–933.

    Article  CAS  Google Scholar 

  5. Reid, R., Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley, Plant Cell Physiol., 2007, vol. 48, pp. 1673–1678.

    Article  CAS  PubMed  Google Scholar 

  6. Foyer, C.H. and Noctor, G., Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxisomes and mitochondria, Physiol. Plant., 2003, vol. 119, pp. 355–364.

    Article  CAS  Google Scholar 

  7. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz, J.M., Rivero, R.M., and Romero, L., Preliminary studies on the involment of biosynthesis of cysteine and glutathione in the resistance to boron toxicity in sunflower plants, Plant Sci., 2003, vol. 165, pp. 811–817.

    Article  CAS  Google Scholar 

  9. Cervilla, L.M., Blasco, B., Rios, J.J., Romero, L., and Ruiz, J.M., Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity, Ann. Bot., 2007, vol. 100, pp. 747–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gunes, A., Soylemezoglu, G., Inal, A., Bagci, E.G., Coban, S., and Sahin, O., Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity, Sci. Hort., 2006, vol. 110, pp. 279–284.

    Article  CAS  Google Scholar 

  11. Kishor, B.P.K., Hong, Z., Miao, G.H., Hu, C.A.A., and Verma, D.P.S., Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants, Plant Physiol., 1995, vol. 108, pp. 1387–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mehta, S.K. and Gaur, J.P., Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris, New Phytol., 1999, vol. 143, pp. 253–259.

    Article  CAS  Google Scholar 

  13. Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y., and Shinozaki, K., Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress, Plant J., 1995, vol. 7, pp. 751–760.

    Article  CAS  PubMed  Google Scholar 

  14. Delauney, A.J. and Verma, D.P.S., Proline biosynthesis and osmoregulation in plants, Plant J., 1993, vol. 4, pp. 215–223.

    Article  CAS  Google Scholar 

  15. Hu, C.C.A., Delauney, A.J., and Verma, D.P.S. A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 9354–9358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong, Z., Lakkineni, K., Zhang, Z., and Verma, D.P.S., Removal of feedback inhibition (Δ1-pyrroline-5-carboxylate synthetase) results in increased proline accumulation and protection of plants from osmotic stress, Plant Physiol., 2000, vol. 122, pp. 1129–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplast: 1. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  18. Bates, L.S., Waldren, R.P., and Tear, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  19. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of the protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  20. Bergmeyer, N., Methoden der enzymatischen Analyse, Berlin: Akademie Verlag, 1970, vol. 1, pp. 636–664.

    Google Scholar 

  21. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  22. Yɩlmaz, G. and Leblebici, S., Farklɩ konsantrasyonlardaki borik asidin bazɩ Carthamus tinctorius L. (Compositae) çesitlerinin tohum çimlenmesi üzerine etkileri, The 19th Ulusal Biyoloji Kongresi Özet Kitapçigɩ (Trabzon, Haziran 23–27, 2008), Trabzon: Karadeniz Teknik Üniv., 2008, p.385.

    Google Scholar 

  23. Turton, T.E., Dawes, I.W., and Grant, C.M., Saccharomyces cerevisiae exhibits a yAP-1 mediated adaptative response to malondialdehyde, J. Bacteriol., 1997, vol. 179, pp. 1096–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, P.H., Bellaloni, N., Wimmer, M.A., Bassil, E.S., Ruiz, J., Hu, H., Pfeffer, H., Dannel, F., and Römheld, V., Boron in plant biology, Plant Biol., 2002, vol. 4, pp. 205–223.

    Article  CAS  Google Scholar 

  25. Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., and Therios, I., Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh), Environ. Exp. Bot., 2006, vol. 56, pp. 54–62.

    Article  CAS  Google Scholar 

  26. Noctor, G. and Foyer, C.H., Ascorbate and glutathione: keeping active oxygen under control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, vol. 49, pp. 249–279.

    Article  CAS  PubMed  Google Scholar 

  27. Hien, D.T., Jacobs, M., Angenon, G., Hermans, C., Thu, T.T., Son, L.V., and Roosens, N.H., Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance, Plant Sci., 2003, vol. 165, pp. 1059–1068.

    Article  CAS  Google Scholar 

  28. Bhaskaran, S., Smith, R.H., and Newton, R.J., Physiological changes in cultured sorghum cells in response to induced water stress: I. Free proline, Plant Physiol., 1970, vol. 79, pp. 266–269.

    Article  Google Scholar 

  29. Lutts, S., Kinet, J.M., and Bouharmont, J., Effects of various salts and mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures, J. Plant Physiol., 1996, vol. 149, pp. 186–195.

    Article  CAS  Google Scholar 

  30. Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., and Jaoua, S., Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants, Plant Sci., 2005, vol. 169, pp. 746–752.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Unal.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblebici, S., Unal, D. Response of Triticum aestivum to boron stress. Russ J Plant Physiol 64, 869–875 (2017). https://doi.org/10.1134/S1021443717060073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717060073

Keywords

Navigation