Skip to main content
Log in

Validation of reliability for reference genes under various abiotic stresses in tea plant

  • Methods
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Reference genes are frequently used as a normalization standard to obtain reliable data during quantitative real-time polymerase chain reaction (qRT-PCR). However, recent studies showed that most traditional reference genes were not stable under different treatments or environmental stresses, which may lead to misinterpret expression of the target genes. In this study, 7 candidate reference genes in tea plant (Camellia sinensis (L.) Kuntze cv. Yingshuang) were selected and their expression stability under different abiotic stresses was analyzed using geNorm, NormFinder, and BestKeeper methods. Our results suggest that TUA1 (alpha-1 tubulin) has the most stable expression under damage stresses according to 3 methods of analysis. For drought stresses, 18S rRNA, and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) were the most stable genes. For cold, Al, and NaCl stresses, GAPDH and TUA1 may be the alternative options. Our results may provide an insight for identification of the optimal reference genes for tea plants under various treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ct:

cycle threshold

CV:

percentage covariance

EF1-α:

elongation factor 1-alpha

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

MMCS:

maximum moisture content of soil

qRT-PCR:

quantitative real-time polymerase chain reaction

T m :

melting temperature

TUA1:

alpha-1 tubulin

TUA2:

alpha-2 tubulin

UBI:

ubiquitin

References

  1. Wong, M.L. and Medrano, J.F., Real-time PCR for mRNA quantitation, Biotechniques, 2005, vol. 39, pp. 75–85.

    Article  CAS  PubMed  Google Scholar 

  2. Bustin, S.A., Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J. Mol. Endocrinol., 2000, vol. 25, pp. 169–193.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, J.M., Roche, J.R., Donaghy, D.J., Thrush, A., and Sathish, P., Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.), BMC Mol. Biol., 2010, vol. 11: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maroufi, A., van Bockstaele, E., and de Loose, M., Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR, BMC Mol. Biol., 2010, vol. 11: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pfaffl, M.W., Tichopad, A., Prgomet, C., and Neuvians, T.P., Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pairwise correlations, Biotech. Lett., 2004, vol. 26, pp. 509–515.

    Article  CAS  Google Scholar 

  6. Bas, A., Forsberg, G., Hammarström, S., and Hammarström, M.L., Utility of the Housekeeping Genes 18S rRNA, β-actin and glyceraldehyde-3-phosphatedehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes, Scand. J. Immunol., 2004, vol. 59, pp. 566–573.

    Article  CAS  PubMed  Google Scholar 

  7. Andersen, C.L., Jensen, J.L., and Ørntoft, T.F., Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res., 2004, vol. 64, pp. 5245–5250.

    Article  CAS  PubMed  Google Scholar 

  8. Aerts, J.L., Gonzales, M.I., and Topalian, S.L., Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR, Biotechniques, 2004, vol. 36, pp. 84–97.

    CAS  PubMed  Google Scholar 

  9. Selvey, S., Thompson, E.W., Matthaei, K., Lea, R.A., Irving, M.G., and Griffiths, L., β-Actin—an unsuitable internal control for RT-PCR, Mol. Cell. Probes, 2001, vol. 15, pp. 307–311.

    Article  CAS  PubMed  Google Scholar 

  10. Iskandar, H.M., Simpson, R.S., Casu, R.E., Bonnett, G.D., Maclean, D.J., and Manners, J.M., Comparison of reference genes for quantitative realtime polymerase chain reaction analysis of gene expression in sugarcane, Plant Mol. Biol. Rep., 2004, vol. 22, pp. 325–337.

    Article  CAS  Google Scholar 

  11. Bustin, S., Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems, J. Mol. Endocrinol., 2002, vol. 29, pp. 23–39.

    Article  CAS  PubMed  Google Scholar 

  12. Andersen, C., Ledet-Jensen, J., and Orntoft, T., Normalization of real-time quantitative RT-PCR data: a mode-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res., 2004, vol. 64, pp. 5245–5250.

    Article  CAS  PubMed  Google Scholar 

  13. Vandesompele, J., de Preter, K., Pattyn, F., Poppe, B., van Roy, N., de Paepe, A., and Speeleman, F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 2002, vol. 3.

  14. Ye, X., Zhang, F., Tao, Y., Song, S., and Fang, J., Reference gene selection for quantitative real-time PCR normalization in different cherry genotypes, developmental stages and organs, Sci. Hortic., 2015, vol. 181, pp. 182–188.

    Article  CAS  Google Scholar 

  15. Gu, C.S., Liu, L.Q., Xu, C., Zhao, Y.H., Zhu, X.D., and Huang, S.Z., Reference gene selection for quantitative real-time RT-PCR normalization in Iris lactea var. chinensis roots under cadmium, lead, and salt stress conditions, Sci. World J., 2014, vol. 2014. http://dx.doi.org/10.1155/2014/532713

  16. Sun, M., Wang, Y., Yang, D., Wei, C., Gao, L., Xia, T., Shan, Y., and Luo, Y., Reference genes for real-time fluorescence quantitative PCR in Camellia sinensis, Chin. Bull. Bot., 2010, vol. 45, pp. 579–587.

    CAS  Google Scholar 

  17. Løvdal, T. and Lillo, C., Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress, Anal. Biochem., 2009, vol. 387, pp. 238–242.

    Article  PubMed  Google Scholar 

  18. Jain, M., Nijhawan, A., Tyagi, A.K., and Khurana, J.P., Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR, Biochem. Biophys. Res. Commun., 2006, vol. 345, pp. 646–651.

    Article  CAS  PubMed  Google Scholar 

  19. Wan, H., Zhao, Z., Qian, C., Sui, Y., Malik, A.A., and Chen, J., Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber, Anal. Biochem., 2010, vol. 399, pp. 257–261.

    Article  CAS  PubMed  Google Scholar 

  20. Brunner, A.M., Yakovlev, I.A., and Strauss, S.H., Validating internal controls for quantitative plant gene expression studies, BMC Plant Biol., 2004, vol. 4: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gohain, B., Bandyopadhyay, T., Borchetia, S., Bharalee, R., Gupta, S., Bhorali, P., Agarwala, N., and Das, S., Identification and validation of stable reference genes in Camellia species, J. Biotechnol. Pharm. Res., 2011, vol. 2: 009–018.

    Google Scholar 

  22. Hao, X., Horvath, D.P., Chao, W.S., Yang, Y., Wang, X., and Xiao, B., Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze), Int. J. Mol. Sci., 2014, vol. 15, pp. 22155–22172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, J.W. and Dang, C.V., Multifaceted roles of glycolytic enzymes, Trends Biochem. Sci., 2005, vol. 30, pp. 142–150.

    Article  CAS  PubMed  Google Scholar 

  24. Stürzenbaum, S.R. and Kille, P., Control genes in quantitative molecular biological techniques: the variability of invariance, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 2001, vol. 130, pp. 281–289.

    Article  PubMed  Google Scholar 

  25. Hochstrasser, M., Evolution and function of ubiquitinlike protein-conjugation systems, Nat. Cell Biol., 2000, vol. 2, pp. E153–E157.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Li.

Additional information

The article is published in the original.

Both authors contributed eqaully to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q.P., Hao, S., Chen, X. et al. Validation of reliability for reference genes under various abiotic stresses in tea plant. Russ J Plant Physiol 63, 423–432 (2016). https://doi.org/10.1134/S1021443716030080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716030080

Keywords

Navigation