Skip to main content
Log in

Temperature and irradiance effects on Rhodella reticulata growth and biochemical characteristics

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The red microalga Rhodella reticulata, a potential source of bioactive substances, was the subject of study of the irradiance and temperature effects on growth rate and biochemical composition of algal biomass. The optimum temperature for growth decreased from 28 to 26°C with increasing light intensity from 260 to 520 µE/(m2 s). The maximal growth rate was 0.21/day at 28°C and lower light intensity (260 µE/(m2 s)). Variations in these parameters also affected the fatty acid productivity, and proteins and carbohydrates content. At 34°C and high light intensity the quantity of carbohydrates was 1.16-fold higher than the quantity at the optimal temperature and low light intensity. Protein content was the highest at lower temperatures for both light intensities. Fatty acid profile showed the highest percent for the polyunsaturated eicosapentaenoic acid (EPA) at 28°C and both light intensities (46% from the whole fatty acid content), an important feature for this strain. This is a prerequisite for use of EPA as a supplement in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADW:

absolutely dry weight

EPA:

eicosapentaenoic acid

PUFAs:

polyunsaturated fatty acids

References

  1. Adarme-Vega, T.C., Lim, D.K.Y., Timmins, M., Vernen, F., Li, Y., and Schenk, P.M., Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Fact., 2012, vol. 11, pp. 96–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sandnes, J.M., Källqvist, T., Wenner, D., and Gislerød, H.R., Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production, J. Appl. Phycol., 2005, vol. 17, pp. 515–525.

    Article  Google Scholar 

  3. Boelen, P., van Dijk, R., Sinninghe, Damsté, J.S., Rijpstra, W.I., and Buma, A.G., On the potential appli-cation of polar and temperate marine microalgae for EPA and DHA production, AMB Express., 2013, vol. 3, pp. 26–35.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Patil, V., Källqvist, T., Olsen, E., Vogt, G., and Gislerød, H.R., Fatty acid composition of 12 microalgae for possible use in aquaculture feed, Aquacult. Int., 2007, vol. 15, pp. 1–9.

    Article  CAS  Google Scholar 

  5. Von Schacky, C., Omega-3 fatty acids: antiarrhythmic, proarrhythmic or both, Curr. Opin. Clin. Nutr. Metab. Care, 2008, vol. 11, pp. 94–99.

    Article  Google Scholar 

  6. Ruxton, C.H.S., Calder, P.C., Reed, S.C., and Simpson, M.J.A., The impact of long-chain n-3 polyunsaturated fatty acids on human health, Nutr. Res. Rev., 2005, vol. 18, pp. 113–129.

    Article  CAS  PubMed  Google Scholar 

  7. Carvalho, A.P. and Malcata, F.X., Kinetic modeling of the autotrophic growth of Pavlova lutheri: study of the combined influence of light and temperature, Biotechnol. Prog., 2003, vol. 19, pp. 1128–1135.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, S.Y., Pan, L.Y., Hong, M.J., and Lee, A.C., The effects of temperature on the growth of and ammonia uptake by marine microalgae, Bot. Stud., 2012, vol. 53, pp. 125–133.

    CAS  Google Scholar 

  9. Korbee, N., Figueroa, F.L., and Aguilera, J., Effect of light on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticte (Bangiales, Rhodophyta), J. Photochem. Photobiol., 2005, vol. 80, pp. 71–78.

    Article  CAS  Google Scholar 

  10. Bernard, O. and Rémond, B., Validation of a simple model accounting for light and temperature effect on microalgal growth, Biores. Technol., 2012, vol. 123, pp. 520–527.

    Article  CAS  Google Scholar 

  11. Dilov, C., Georgiev, D., and Bozhkova, M., Cultivation and application of microalgae in the People’s Republic of Bulgaria, Arch. Hydrobiol., 1985, vol. 20, pp. 35–38.

    Google Scholar 

  12. Ivanova, J., Kabaivanova, L., Petrov, P., and Yankova, S., Optimization strategies for improved growth, polysaccharide production and storage of the red microalga Rhodella reticulata, Bulg. Chem. Commun., 2015, vol. 47.

  13. Makarevičienė, V., Skorupskaitė, V., and Andruleviiütė, V., Biomass and oil production of green microalgae Scenedesmus sp. using different nutrients and growth, Environ. Res. Eng. Manage., 2012, vol. 4, pp. 5–13.

    Google Scholar 

  14. Li, H., Li, Z., Xiong, S., Zhang, H., Li, N., Zhou, S., Liu, Y., and Huang, Z., Pilot-scale isolation of bioactive extracellular polymeric substances from cell-free media of mass microalgal cultures using tangential-flow ultrafiltration, Proc. Biochem., 2011, vol. 46, pp. 1104–1109.

    Article  CAS  Google Scholar 

  15. Lowry O., Rosenbrough, N., Farr, A., and Randall, R., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  16. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., Colorimetric method for determination of sugars and related substances, Anal. Chem., 1956, vol. 28, pp. 350–356.

    Article  CAS  Google Scholar 

  17. Iliev, I. and Petkov, G., Growth, lipids and fatty acids of the desert tolerant blue-green alga Arthronema africanum, Compt. Rend. Acad. Bulg. Sci., 2006, vol. 9, pp. 1079–1082.

    Google Scholar 

  18. Vonshak, A., Torzillo, G., Boussiba, S., Millie, D.F., and Kurgens, P., Temperature induced photoinhibition in outdoor cultures of Monodus subterraneus, J. Phycol., 2000, vol. 36, pp. 69–78.

    Article  Google Scholar 

  19. Cassidy, K.O., Evaluating Algal Growth at Different Temperatures, Master’s Thesis, Theses and Dissertations–Biosystems and Agricultural Engineering, Lexington, USA: University of Kentucky, 2011, paper 3, http://uknowledge.uky.edu/bae_etds/3

    Google Scholar 

  20. Kim, H.W., Vannela, R., Zhou, C., and Rittmann, B.E., Nutrient acquisition and limitation for the photoautotrophic growth of Synechocystis sp. PCC6803 as a renewable biomass source, Biotech. Bioeng., 2011, vol. 108, pp. 277–285.

    Article  CAS  Google Scholar 

  21. Renaud, S.M., Thinh, L.V., and Parry, D.L., The gross composition and fatty acids composition of 18 species of tropical Australian microalgae for possible use in mariculture, Aquaculture, 1999, vol. 170, pp. 147–159.

    Article  CAS  Google Scholar 

  22. Sukenik, A. and Wahnon, R., Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana, Aquaculture, 1991, vol. 97, pp. 61–72.

    Article  CAS  Google Scholar 

  23. Wen, Z.Y. and Chen, F., A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis, Appl. Microbiol. Biotechnol., 2001, vol. 57, pp. 316–322.

    Article  CAS  PubMed  Google Scholar 

  24. Martins, D.A., Custodio, L., Barreira, L., Pereira, H., Ben-Hamadou, R., Varela, J., and Abu-Salah, K., Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae, Mar. Drugs, 2013, vol. 11, pp. 2259–2281.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mihova, S., Minkova, K., Petkov, G., and Georgiev, D., Thermal and photoregulation of the lipid and fatty acid content in cells of Porphyridium sordidum, Compt. Rend. Acad. Bulg. Sci., 1996, vol. 49, pp. 109–118.

    Google Scholar 

  26. Georgiev, D., Minkova, K., Petkov, G., and Sholeva, M., Lipid extraction from Porphyridium cruentum dry biomass, Compt. Rend. Acad. Bulg. Sci., 1992, vol. 45, pp. 131–134.

    CAS  Google Scholar 

  27. Hoffmann, M., Marxen, K., Schulz, R., and Vanselow, H.K., TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments, Mar. Drugs, 2010, vol. 8, pp. 2526–2545.

    Article  CAS  PubMed  Google Scholar 

  28. Klyachko-Gurvich, G.L., Tsoglin, L.N., Doucha, J., and Kopetskii, J., Shebalina (Ryabykh), I.B., and Semenenko, V.E., Desaturation of fatty acids as an adaptive response to shifts in light intensity, Physiol. Plant., 1999, vol. 107, pp. 240–249.

    Article  CAS  Google Scholar 

  29. Khotimchenko, S.V. and Yakovleva, I.M., Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance, Phytochemistry, 2005, vol. 66, pp. 73–79.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson, G.A., ffixJr., Lipids and membrane function in green algae, Biochim. Biophys. Acta, 1996, vol. 1302, pp. 17–45.

    Article  PubMed  Google Scholar 

  31. Guiheneuf, F., Mimouni, V., Ulmann, L., and Tremblin, G., Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalgae Pavlova lutheri commonly used in mariculture, J. Exp. Mar. Biol. Ecol., 2009, vol. 369, pp. 136–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kabaivanova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, J.G., Kabaivanova, L.V. & Petkov, G.D. Temperature and irradiance effects on Rhodella reticulata growth and biochemical characteristics. Russ J Plant Physiol 62, 647–652 (2015). https://doi.org/10.1134/S102144371504010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371504010X

Keywords

Navigation