Skip to main content
Log in

DC field effect on the structuring and thermomechanical and electric properties of nanocomposites formed from pectin—Cu2+—polyethyleneimine ternary polyelectrolyte—metal complexes

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

With the use of combined structural methods, thermomechanical analysis, and dielectric spectroscopy, the effect of a dc field on the structuring and properties of ternary polyelectrolyte—metal complexes prepared from a stoichiometric polyelectrolyte complex based on the weak polyelectrolytes pectin and polyethyleneimine and CuSO4 salt, as well as nanocomposites formed from these complexes, has been studied. It has been found that the chemical reduction of Cu2+ cations in the bulk of a ternary complex under the action of a dc field occurs via the formation of a nanocomposite consisting of a polyelectrolyte complex and nanoparticles of only the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in the absence of field. With the use of thermomechanical analysis and dielectric spectroscopy, it has been shown that, under a dc field, nanocomposites with higher structural glass-transition temperatures and electric conductivities are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xu, L. P. Jiang, and J. J. Zhu, Nanotecnology 20, 045605 (2009).

    Google Scholar 

  2. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Metal Nanoparticles in Polymers (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  3. B. C. Gates, L. Guezi, and H. Knosinger, Metal Clusters in Catalysis (Elsevier, Amsterdam, 1986).

    Google Scholar 

  4. L. Nicolais, Metal-Polymer Nanocomposites (Wiley, New York, 2005).

    Google Scholar 

  5. G. B. Sergeev, Nanochemistry (Izd. MGU, Moscow, 2003) [in Russian].

    Google Scholar 

  6. A. B. Zezin and V. B. Rogacheva, S. P. Valueva, N. I. Nikonorova, M. F. Zantsokhova, A. A. Zezin, Ross. Nanotekhnol. 1 (1): 191 (2006).

    Google Scholar 

  7. G. Yu. Ostaeva, E. D. Selisheva, V. D. Pautov, and I. M. Papisov, Polym. Sie., Ser. B 50 (5–6), 147 (2008).

    Article  Google Scholar 

  8. A. B. Zezin, V. B. Rogacheva, V. I. Feldman, P. Afanasiev, A. A. Zezin, Adv. Colloid Interface Sci. 158 (1–2), 84 (2010).

    Article  CAS  Google Scholar 

  9. V. L. Demchenko and V. I. Shtompel’, Polym. Sci., Ser. B 56 (6): 927 (2014).

    Article  CAS  Google Scholar 

  10. O. Kratky, I. Pilz, and P. J. Schmitz, J. Colloid Interface Sci. 21 (1): 24 (1966).

    Article  CAS  Google Scholar 

  11. I. M. Kalogeras, M. Roussos, and A. Vassilikou-Dova, Eur. Phys. J., No. 18, 467 (2005).

    CAS  Google Scholar 

  12. V. I. Shtompel’ and Yu. Yu. Kercha, Structure of Linear Polyurethanes (Naukova dumka, Kiev, 2008) [in Russian].

    Google Scholar 

  13. A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover Publ., New York, 1956).

    Google Scholar 

  14. A. B. Zezin, N. M. Kabanov, A. I. Kokorin, and V. B. Rogacheva, Vysokomol. Soedin., Ser. A 19 (1): 118 (1977).

    CAS  Google Scholar 

  15. N. M. Kabanov, A. I. Kokorin, V. B. Rogacheva, and A. B. Zezin, Vysokomol. Soedin., Ser. A 21 (1): 209 (1979).

    CAS  Google Scholar 

  16. N. M. Kabanov, N. A. Kozhevnikova, A. I. Kokorin, V. B. Rogacheva, A. B. Zezin, V. A. Kabanov, Vysokomol. Soedin., Ser. A 21 (8): 1891 (1979).

    CAS  Google Scholar 

  17. T. Kou, C. Jin, C. Zhang, J. Sun, Z. Zhang, RSC Adv. 2, 12636 (2012).

    Article  CAS  Google Scholar 

  18. W. Ruland, J. Appl. Crystallogr. 4 (1): 70 (1971).

    Article  Google Scholar 

  19. R. Perret and W. Ruland, Kolloid Z. Z. Polym. 247, 835 (1971).

    Article  CAS  Google Scholar 

  20. G. Porod, Small-Angle X-Ray Scattering, Ed. by O. Glatter and O. Kratky (Acad. Press, London, 1982).

  21. L. V. Donchenko, G. G. Firsov, Pectin: Main Properties, Production, and Application (DeLi print, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Demchenko.

Additional information

Original Russian Text © V.L. Demchenko, V.I. Shtompel’, S.V. Riabov, 2015, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2015, Vol. 57, No. 5, pp. 466–474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demchenko, V.L., Shtompel’, V.I. & Riabov, S.V. DC field effect on the structuring and thermomechanical and electric properties of nanocomposites formed from pectin—Cu2+—polyethyleneimine ternary polyelectrolyte—metal complexes. Polym. Sci. Ser. A 57, 635–643 (2015). https://doi.org/10.1134/S0965545X15050065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15050065

Keywords

Navigation