Skip to main content
Log in

Effect of electrode material on contact high-voltage polarization in a vinylidene fluoride-hexafluoropropylene copolymer

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

High-voltage polarization processes occurring in alternating fields of various frequencies in extruded films of vinylidene fluoride-hexafluoropropylene copolymers are studied. Remanent polarization typical for ferroelectric polymers with a polar cell appears during crystallization in the nonpolar α phase. This effect is associated with the presence of a highly imperfect ferroelectric (or antiferroelectric) phase in the copolymer, where chains assume planar zigzag conformations. The magnitude of remanent polarization depends on the frequency of the applied bipolar sawtooth voltage. This observation may be explained by the fact that the resulting field is created not only by the external source but also by the space charge that is contributed by carriers injected from electrodes. With the use of deposited Au and Al, the role of electrode material in polarization and conduction processes is ascertained. In the case of Al, Al2O3 and new Al-C chemical bonds are formed on the polymer surface. Owing to formation of these additional dielectric layers at the copolymer/metal interface, electrodes may be blocked partially. The above new chemical bonds facilitate formation of deeper surface traps for carriers; as a result, the remanent surface potential appears in polarized samples even after storage in the short-circuit mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Application of Ferroelectric Polymers, Ed. by T. T. Wang, J. M. Herbert and A. M. Glass (Blackie, Glasgow, 1988).

    Google Scholar 

  2. Ferroelectric Polymers — Chemistry, Physics and Applications, Ed. by H. S. Nalva (Marcel Dekker, New York, 1995).

    Google Scholar 

  3. V. V. Kochervinskii, Usp. Khim. 63, 383 (1994).

    CAS  Google Scholar 

  4. V. V. Kochervinskii, Crystallogr. Rep. A 48, 649 (2003).

    Article  CAS  Google Scholar 

  5. V. V. Kochervinskii, Usp. Khim. 68, 821 (1999).

    CAS  Google Scholar 

  6. W. Eisenmenger, H. Schmidt, and B. Dehlen, Braz. J. Phys. 29, 295 (1999).

    Article  CAS  Google Scholar 

  7. J. Fuhrmann, R. Hofmann, H. J. Streibel, and U. Jahn, IEEE Trans. Electr. Insul. 21, 529 (1986).

    Article  Google Scholar 

  8. V. V. Kochervinskii and S. N. Sul’yanov, Fiz. Tverd. Tela (S.-Peterburg) 48, 1016 (2006).

    Google Scholar 

  9. V. V. Kochervinskii, I. A. Malyshkina, G. V. Markin, et al., J. Appl. Polym. Sci. 105, 1101 (2007).

    Article  CAS  Google Scholar 

  10. V. V. Kochervinskii, N. V. Kozlova, A. Yu. Khnykov, et al., J. Appl. Polym. Sci. 116, 695 (2010).

    CAS  Google Scholar 

  11. V. V. Kochervinskii, E. V. Chubunova, Yu. Yu. Lebedinskii, et al., Polymer Science, Ser. A (in press).

  12. H. Ogura, S. Tohriyama, A. Hanaki, et al., Jpn. J. Appl. Phys., Part I 30, 2819 (1991).

    Article  CAS  Google Scholar 

  13. Y. Takahashi, H. Kodama, M. Nakamura, et al., Polym. J. (Tokyo) 31, 263 (1999).

    CAS  Google Scholar 

  14. I. L. Guy and J. Unsworth, Appl. Phys. Lett. 52, 532 (1988).

    Article  CAS  Google Scholar 

  15. R. C. G. Naber, P. W. M. Blom, A. W. Marsman, and D. M. De Leeuw, Appl. Phys. Lett. 85, 2032 (2004).

    Article  CAS  Google Scholar 

  16. P. Wurfel, I. P. Batra, and J. T. Jacobs, Phys. Rev. Lett. 30, 1218 (1973).

    Article  CAS  Google Scholar 

  17. P. Wurfel and I. P. Batra, Phys. Rev. B: Condens. Matter 8, 5126 (1973).

    Article  CAS  Google Scholar 

  18. D. Dimos, W. L. Warren, M. B. Sinclar, et al., J. Appl. Phys. 76, 4305 (1994).

    Article  CAS  Google Scholar 

  19. G. E. Pike, W. L. Warren, D. Dimos, et al., Appl. Phys. Lett. 66, 484 (1995).

    Article  CAS  Google Scholar 

  20. M. Ieda, G. Sawa, S. Nakamura, and Y. Nishio, J. Appl. Phys. 46, 2796 (1975).

    Article  CAS  Google Scholar 

  21. R. E. Barker, Pure Appl. Chem. 46, 157 (1975).

    Article  Google Scholar 

  22. A. K. Vijh, J. Appl. Phys. 49, 3621 (1978).

    Article  CAS  Google Scholar 

  23. J.-P. Crine, D.-L. Piron, and A. Yelon, J. Appl. Phys. 50, 3762 (1979).

    Article  CAS  Google Scholar 

  24. T. Furukawa, Phase Transitions 18, 143 (1989).

    Article  CAS  Google Scholar 

  25. G. Dreyfus and J. Lewiner, Phys. Rev. B: Condens. Matter 8, 3032 (1973).

    Article  Google Scholar 

  26. H. von Seggern and S. N. Fedosov, Appl. Phys. Lett. 81, 2830 (2002).

    Article  Google Scholar 

  27. H. von Seggern and S. N. Fedosov, IEEE Trans. Dielectr. Electr. Insul. 11, 232 (2004).

    Article  Google Scholar 

  28. V. V. Kochervinskii, Crystallogr. Rep. Suppl. 51, 88 (2006).

    Article  Google Scholar 

  29. V. V. Kochervinskii, Polymer Science, Ser. C 50, 93 (2008) [Vysokomol. Soedin., Ser. C 50, 1407 (2008)].

    Article  Google Scholar 

  30. E. Bihler, K. Holdik, and W. Eisenmenger, IEEE Trans. Electr. Insul. 22, 2070 (1987).

    Article  Google Scholar 

  31. G. Eberle, H. Schmidt, and W. Eisenmenger, IEEE Trans. Dielectr. Electr. Insul. 3, 624 (1996).

    Article  CAS  Google Scholar 

  32. Y. Tajitsu, J. Mater. Sci. 31, 2081 (1996).

    Article  CAS  Google Scholar 

  33. A. Toureille, P. Notingher, N. Vella, et al., Polym. Int. 46, 81 (1998).

    Article  CAS  Google Scholar 

  34. G. Beamson and D. Briggs, High-Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, England, 1992).

    Google Scholar 

  35. V. V. Kochervinskii, Usp. Khim. 65, 936 (1996).

    CAS  Google Scholar 

  36. L. Bellamy, The Infrared Spectra of Complex Molecules (Methuen, London, 1957; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  37. Y. Hirose, A. Khan, V. Aristov, et al., Phys. Rev. B: Condens. Matter 54, 13748 (1996).

    Article  CAS  Google Scholar 

  38. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 11, 605 (1999).

    Article  CAS  Google Scholar 

  39. M. A. Baldo and S. R. Forrest, Phys. Rev. B: Condens. Matter 64, 085201, 1–17 (2001).

    Article  Google Scholar 

  40. P. K. Wu, G.-R. Yang, X. F. Ma, and T.-M. Lu, Appl. Phys. Lett. 65, 508 (1994).

    Article  CAS  Google Scholar 

  41. B. Xu, C. N. Borca, S. Ducharme, et al., J. Chem. Phys. 114, 1866 (2001).

    Article  CAS  Google Scholar 

  42. S.-J. Ding, V. Zaporojtchenko, J. Kruse, et al., Appl. Phys. A 76, 851 (2003).

    Article  CAS  Google Scholar 

  43. A. N. Streletskii, I. V. Povstugar, A. B. Borunova, et al., Colloid J. 68, 470 (2006).

    Article  CAS  Google Scholar 

  44. F. Fariaut, C. Boulmer-Leborgne, N. Semmar, and E. Le Menn, Appl. Phys. A 83, 101 (2006).

    Article  Google Scholar 

  45. A. Baba and K. Ikezaki, J. Appl. Phys. 57, 359 (1985).

    Article  CAS  Google Scholar 

  46. D. Rollik, S. Bauer, and R. Gerhard-Multhaupt, J. Appl. Phys. 85, 3282 (1999).

    Article  CAS  Google Scholar 

  47. S. Ikeda, M. Jimbo, S. Kobayashi, and Y. Wada, J. Polym. Sci., Part B: Polym. Phys. 23, 1781 (1985).

    CAS  Google Scholar 

  48. S. Ikeda, T. Fukada, and Y. Wada, J. Appl. Phys. 64, 2026 (1988).

    Article  CAS  Google Scholar 

  49. M. Womes, E. Bihler, and W. Einsenmenger, IEEE Trans. Electr. Insul. 24, 461 (1989).

    Article  CAS  Google Scholar 

  50. G. Eberele, E. Bihler, and W. Einsenmenger, IEEE Trans. Electr. Insul. 26, 69 (1991).

    Article  Google Scholar 

  51. B. Martin and H. Kliem, J. Appl. Phys. 98, 074102 (2005).

    Article  Google Scholar 

  52. N. Klein and M. Albert, J. Appl. Phys. 53, 5840 (1982).

    Article  CAS  Google Scholar 

  53. T. Van Woudenbergh, P. W. M. Blom, M. C. J. M. Vissenberg, and J. N. Huiberts, Appl. Phys. Lett. 79, 1697 (2001).

    Article  Google Scholar 

  54. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).

    Article  CAS  Google Scholar 

  55. M. Stobel, J. Staudigel, F. Steuber, et al., Appl. Phys. Lett. 76, 115 (2000).

    Article  Google Scholar 

  56. K. C. Kao, J. Appl. Phys. 55, 752 (1984).

    Article  CAS  Google Scholar 

  57. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  58. T. Nakajima, R. Abe, Y. Takahashi, and T. Furukava, Jpn. J. Appl. Phys. 44, L1385 (2005).

    Article  CAS  Google Scholar 

  59. J. C. Simmons and G. W. Taylor, Phys. Rev. B: Condens. Matter 6, 4804 (1972).

    Article  CAS  Google Scholar 

  60. H. J. Wintle, IEEE Trans. Electr. Insul. 21, 747 (1986).

    Article  Google Scholar 

  61. M. Z. Bazant, K. Thornton, and A. Ajdari, Phys. Rev. B: Condens. Matter 70, 021506–1 (2004).

    Google Scholar 

  62. D. Liu K. C. Kao, J. Appl. Phys. 69, 2489 (1991).

    Article  CAS  Google Scholar 

  63. O. Fanjeau and D. Malec, J. Phys. D: Appl. Phys. 33, 999 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kochervinskii.

Additional information

Original Russian Text © V.V. Kochervinskii, E.V. Chubunova, Yu.Yu. Lebedinskii, N.A. Shmakova, 2011, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2011, Vol. 53, No. 10, pp. 1729–1747.

This work was supported by the Russian Foundation for Basic Research, project no. 10-03-00914.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochervinskii, V.V., Chubunova, E.V., Lebedinskii, Y.Y. et al. Effect of electrode material on contact high-voltage polarization in a vinylidene fluoride-hexafluoropropylene copolymer. Polym. Sci. Ser. A 53, 912–928 (2011). https://doi.org/10.1134/S0965545X11100051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X11100051

Keywords

Navigation