Skip to main content
Log in

Synthesis, characterization and swelling kinetics of thermoresponsive PAM-g-PVA/PVP semi-IPN hydrogels

  • Polymer Networks
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Polyacrylamide grafted poly(vinyl alcohol)/polyvinylpyrrolidone (PAM-g-PVA/PVP) semi-interpenetrating polymer network (semi-IPN) hydrogels were designed and prepared via a simple free radical polymerization route initiated by a PVA-(NH4)2Ce(NO3)6 redox reaction technique. The structure of the PAM-g-PVA/PVP hydrogels was characterized by a Fourier transform infrared spectroscope (FTIR), and the morphologies were observed by a scanning electron microscopy (SEM). The swelling kinetics investigations demonstrated that the equilibrium swelling (Q e ) of the (PAM-g-PVA/PVP) semi-IPN hydrogels depended on PVP compositional ratios and temperature. The Q e values were reduced with increasing the PVP contents, which was in agreement with theoretical water contents (S ) fitted by swelling kinetic data, and the swelling mechanism belonged to a non-Fickian mode for the PAM-g-PVA/PVP hydrogels. These hydrogels displayed thermosensitivities different from the common thermoresponsive gels that have a lower critical solution temperature. The swelling is enhanced with increasing the temperature of the media before 42°C, and later the equilibrium swelling is contrarily reduced. Therefore, the swelling behavior of the PAM-g-PVA/PVP hydrogels may be controlled and modulated by means of the compositional ratios of PVP to PAM-g-PVA and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Kim, S. J. Park, and S. I. Kim, React. Funct. Polym. 55, 61 (2003).

    Article  CAS  Google Scholar 

  2. J. Kopecek, Nature (London) 417, 388 (2002).

    Article  CAS  Google Scholar 

  3. Y. F. Tang, Y. M. Du, X. W. Hu, X. W. Shi, and J. F. Kennedy, Carbohydr. Polym. 67, 491 (2007).

    Article  CAS  Google Scholar 

  4. H. C. Chiu, Y. F. Lin, and S. H. Hung, Macromolecules 35, 5235 (2002).

    Article  CAS  Google Scholar 

  5. K. Yamamoto, T. Serizawa, and M. Akashi, Macromol. Chem. Phys. 204, 1027 (2003).

    Article  CAS  Google Scholar 

  6. Y. X. Zhang, F. P. Wu, M. Z. Li, and E. J. Wang, Polymer 46, 7695 (2005).

    Article  CAS  Google Scholar 

  7. Y. Zhao, H. Su, L. Fang, and T. Tan, Polymer 46, 5368 (2005).

    Article  CAS  Google Scholar 

  8. E. Kato, J. Appl. Polym. Sci. 95, 1069 (2005).

    Article  CAS  Google Scholar 

  9. S. P. Jin, M. Z. Liu, F. Zhang, S. L. Chen, and A. Z. Niu, Polymer 47, 1526 (2006).

    Article  CAS  Google Scholar 

  10. W. Cai and R. B. Gupta, Ind. Eng. Chem. Res. 40, 3406 (2001).

    Article  CAS  Google Scholar 

  11. T. Caykara, S. Kiper, and G. Demirel, Eur. Polym. J. 42, 348 (2006).

    Article  CAS  Google Scholar 

  12. A. Minett, J. Fraysse, G. Gang, G. T. Kim, and S. Roth, Curr. Appl. Phys. 2, 61 (2002).

    Article  Google Scholar 

  13. U. Vohrer, I. Kolaric, M. H. Haque, S. Roth, and U. Deltaff-Weglikowska, Carbon 42, 1159 (2004).

    Article  CAS  Google Scholar 

  14. T. R. Hoare and D. S. Kohane, Polymer 49, 1993 (2008).

    Article  CAS  Google Scholar 

  15. Responsive Gels: Volume Transitions I, Adv. Polym. Sci., Ed. by K. Disek (Springer, Berlin, 1993).

    Google Scholar 

  16. Y. Osada and A. Khokhlov, Polymer Gels and Networks (Marcel Dekker, New York, 2002).

    Google Scholar 

  17. I. Galaev and B. Mattiasson, Smart Polymers: Applications in Biotechnology and Biomedicine (CRC, Boca Raton, 2008).

    Google Scholar 

  18. S. Matsumura and K. Toshima, ACS Symp. Ser., Vol. 627 (1996), Chap. 11, p. 137.

    Article  CAS  Google Scholar 

  19. C. Bastioli, in Handbook of Biodegradable Polymers (Rapra Technology, Crewe, 2005).

    Google Scholar 

  20. S. A. Riyajan and J. T. Sakdapipanich, Polym. Int. 59, 1130 (2010).

    CAS  Google Scholar 

  21. S. Kubo and J. F. Kadla, Biomacromolecules 4, 561 (2003).

    Article  CAS  Google Scholar 

  22. L. Zhao, L. Xu, H. Mitomo, and F. Yoshi, Carbohydr. Polym. 64, 473 (2006).

    Article  CAS  Google Scholar 

  23. Q. Zhao, J. Sun, Y. Lin, and Q. Zhou, React. Funct. Polym. 70, 602 (2010).

    Article  CAS  Google Scholar 

  24. E. Turan, S. Demirci, and T. Caykara, J. Appl. Polym. Sci. 111, 108 (2009).

    Article  CAS  Google Scholar 

  25. I. Neamtu, A. P. Chiriac, and E. Nita, J. Optoelectron. Adv. Mater. 8, 1939 (2006).

    CAS  Google Scholar 

  26. J. M. Gonzalez-Saiz and C. Pizarro, Eur. Polym. J. 37, 435 (2001).

    Article  CAS  Google Scholar 

  27. Z. R. Pan, Polymer Chemistry (Chem. Ind., Beijing, 2002).

    Google Scholar 

  28. H. L. Hintz and D. C. Johnson, Org. Chem. 32, 556 (1967).

    Article  CAS  Google Scholar 

  29. F. R. Duke and A. A. Forist, J. Am. Chem. Soc. 71, 2790 (1949).

    Article  CAS  Google Scholar 

  30. F. R. Duke and R. F. Bremer, J. Am. Chem. Soc. 73, 5179 (1951).

    Article  CAS  Google Scholar 

  31. S. C. Jana, S. Matti, and S. Biswas, J. Appl. Polym. Sci. 75, 977 (2000).

    Article  Google Scholar 

  32. R. F. Storey, D. Sudhakar, and L. J. Goff, J. Macromol. Sci., Chem. 24, 1051 (1987).

    Article  Google Scholar 

  33. G. Mino and S. Kaizerman, J. Polym. Sci. 39, 523 (1959).

    Article  CAS  Google Scholar 

  34. R. F. Storey and L. J. Goff, Macromolecules 22, 1058 (1989).

    Article  CAS  Google Scholar 

  35. S. Krishnamoorthi and R. P. Singh, J. Appl. Polym. Sci. 101, 2109 (2006).

    Article  CAS  Google Scholar 

  36. A. Ruggirello and V. Turco Liveri, Colloid Polym. Sci. 281, 1062 (2003).

    Article  CAS  Google Scholar 

  37. O. anl and A. N. Işıklan, Eur. J. Pharm. Biopharm. 65, 204 (2007).

    Article  Google Scholar 

  38. A. Papancea, A. J. M. Valente, S. Patachia, M. G. Miguel, and B. Lindman, Langmuir 24, 273 (2008).

    Article  CAS  Google Scholar 

  39. Y. L. Luo, K. P. Zhang, Q. B. Wei, Z. Q. Liu, and Y. S. Chen, Acta Biomater. 5, 316 (2009).

    Article  CAS  Google Scholar 

  40. Q. Tang, J. Wu, H. Sun, S. Fan, D. Hu and J. Lin, Carbohydr. Polym. 73, 473 (2008).

    Article  CAS  Google Scholar 

  41. D. E. Rodriguez, J. Romero-Garcia, E. Ramirez-Vargas, A. S. Ledezma-Pérez, and E. Arias-Marin, Mater. Lett. 60, 1390 (2006).

    Article  CAS  Google Scholar 

  42. I. Neamtu, A. P. Chiriac, L. E. Nita, O. Paduraru, M. C. Popescu, and C. Grigoras, in Proceedings of the Conference BRAMAT, Brasov, Romania, 2005.

  43. A. M. Atta and K. F. Arndt, Polym. Int. 53, 1870 (2004).

    Article  CAS  Google Scholar 

  44. Z. Lin, W. Wu, J. Wang, and X. Jin, Frontiers Mater. Sci. China 1, 427 (2007).

    Article  Google Scholar 

  45. A. Suzuki and T. Hara, J. Chem. Phys. 114, 5002 (2001).

    Article  Google Scholar 

  46. E. M. Tazhbaev, E. S. Mustafin, M. Zh. Burkeev, and B. K. Kasenov, Russ. J. Phys. Chem. 80, 1300 (2006).

    Article  CAS  Google Scholar 

  47. M. Annaka, C. Tanaka, T. Nakahira, M. Sugiyama, T. Aoyagi, and T. Okano, Macromolecules 35, 8173 (2002).

    Article  CAS  Google Scholar 

  48. Y. Kaneko, S. Nakamura, K. Sakai, T. Aoyaji, A. Kikuchi, Y. Sakurai, and T. Okano, Macromolecules 31, 5971 (1998).

    Article  Google Scholar 

  49. T. Okano, Y. H. Bae, H. Jacobs, and S. W. Kim, J. Controlled Release 11, 255 (1990).

    Article  CAS  Google Scholar 

  50. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kiku- chi, Y. Sakurai, and T. Okano, Nature (London) 374, 240 (1995).

    Article  CAS  Google Scholar 

  51. J. S. Kim, J. Ind. Eng. Chem. 13, 718 (2007).

    CAS  Google Scholar 

  52. S. K. Chatterjee and N. Misra, Polym. Int. 47, 367 (1998).

    Article  CAS  Google Scholar 

  53. Z. H. Lin, W. H. Wu, J. Q. Wang, and X. Jin, Fine Chem. 24, 1043 (2007).

    CAS  Google Scholar 

  54. T. Caykara, S. Kiper, and G. Demirel, Eur. Polym. J. 42, 348 (2006).

    Article  CAS  Google Scholar 

  55. L. Serra, J. Domenech, and N. A. Peppas, Biomaterials 27, 5440 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, QB., Luo, YL., Gao, LJ. et al. Synthesis, characterization and swelling kinetics of thermoresponsive PAM-g-PVA/PVP semi-IPN hydrogels. Polym. Sci. Ser. A 53, 707–714 (2011). https://doi.org/10.1134/S0965545X11080062

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X11080062

Keywords

Navigation