Skip to main content
Log in

Visualization of strain-induced structural rearrangements in amorphous poly(ethylene terephthalate)

  • Structure, Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

A direct microscopic observation procedure is applied to study the deformation of amorphous PET decorated with a thin metal layer when stretching is performed at different draw rates and at temperatures below and above the glass transition temperature T g. Analysis of the formed microrelief allows stress fields responsible for the deformation of the polymer to be visualized and characterized. When tensile drawing is performed at temperatures above T g, inhomogeneity of stress fields increases with the increasing draw rate; at high draw rates, the stress-induced crystallization of PET takes place. In the case of drawing the polymer at temperatures below T g, direct microscopic observations make it possible to visualize the development of shear bands that appear in the unoriented part of the polymer specimen adjacent to the neck. The shear bands are oriented at an angle of about 45° with respect to the draw direction. When necking involves the unoriented part of the polymer, shear bands abruptly change their orientation and become aligned practically parallel to the draw axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Lazurkin, Doctoral Dissertation in Mathematics and Physics (Moscow, 1954) [in Russian].

  2. Structural and Mechanical Behavior of Glassy Polymers, Ed. by M. S. Arzhakov, S. A. Arzhakov, and G. E. Zaikov (Nova Science, New York, 1997).

    Google Scholar 

  3. E. F. Oleynik, High Performance Polymers, Ed. by E. Baer and S. Moet (Hanser, Berlin, 1991), p. 79.

    Google Scholar 

  4. The Physics of Glassy Polymers, Ed. by R. N. Haward and B. Y. Young (Chapman & Hall, London, 1997).

    Google Scholar 

  5. S. V. Shenogin, G. W. H. Hohne, O. B. Salamatina, et al., Vysokomol. Soedin., Ser. A 46, 30 (2004) [Polymer Science, Ser. A 46, 21 (2004)].

    CAS  Google Scholar 

  6. E. F. Oleinik, Vysokomol. Soedin., Ser. C 45, 2137 (2003) [Polymer Science, Ser. C 45, 17 (2003)].

    CAS  Google Scholar 

  7. L. Treloar, The Physics of Rubber Elasticity (Oxford Univ. Press, Oxford, 1949; Inostrannaya Literatura, Moscow, 1953).

    Google Scholar 

  8. A. L. Volynskii, T. E. Grokhovskaya, A. V. Bol’shakova, et al., Vysokomol. Soedin., Ser. A 46, 1332 (2004) [Polymer Science, Ser. A 46, 806 (2004)].

    CAS  Google Scholar 

  9. T. Nishino, A. Nozawa, M. Kotera, and K. Nakamae, Rev. Sci. Instrum. 71, 2094 (2000).

    Article  CAS  Google Scholar 

  10. P. G. Llana and M. C. Boyce, Polymer 40, 6729 (1999).

    Article  CAS  Google Scholar 

  11. A. Mahendrasingam, C. Martin, W. Fuller, et al., Polymer 40, 5553 (1999).

    Article  CAS  Google Scholar 

  12. A. L. Volynskii, T. E. Grokhovskaya, A. S. Kechek’yan, et al., Dokl. Akad. Nauk 374, 644 (2000).

    CAS  Google Scholar 

  13. A. L. Volynskii, A. S. Kechek’yan, T. E. Grokhovskaya, et al., Vysokomol. Soedin., Ser. A 44, 615 (2002) [Polymer Science, Ser. A 44, 374 (2002)].

    CAS  Google Scholar 

  14. A. L. Volynskii, T. E. Grokhovskaya, A. S. Kechek’yan, and N. F. Bakeev, Vysokomol. Soedin., Ser. A 45, 449 (2003) [Polymer Science, Ser. A 45, 265 (2003)].

    Google Scholar 

  15. A. L. Volynskii, T. E. Grokhovskaya, V. V. Lyulevich, et al., Vysokomol. Soedin., Ser. A 46, 247 (2004) [Polymer Science, Ser. A 46, 130 (2004)].

    CAS  Google Scholar 

  16. A. L. Volynskii, S. L. Bazhenov, O. V. Lebedeva, et al., J. Appl. Polym. Sci. 72, 1267 (1999).

    Article  CAS  Google Scholar 

  17. A. L. Volynskii, S. L. Bazhenov, O. V. Lebedeva, and N. F. Bakeev, J. Mater. Sci. 35, 547 (2000).

    Article  CAS  Google Scholar 

  18. S. L. Bazhenov, A. L. Volynskii, V. M. Alexandrov, and N. F. Bakeev, J. Polym. Sci., Part B: Polym. Phys. 40, 10 (2002).

    Article  CAS  Google Scholar 

  19. A. L. Volynskii, E. E. Voronina, S. L. Bazhenov, and N. F. Bakeev, Dokl. Akad. Nauk 363, 638 (1998).

    CAS  Google Scholar 

  20. L. M. Yarysheva, D. A. Panchuk, S. V. Moiseeva, et al., Vysokomol. Soedin., Ser. A [Polymer Science, Ser. A] (in press).

  21. J. C. M. Li, Polym. Eng. Sci. 24, 750 (1984).

    Article  CAS  Google Scholar 

  22. A. S. Kechek’yan, Vysokomol. Soedin., Ser. B 29, 804 (1987).

    CAS  Google Scholar 

  23. A. L. Volynskii and N. F. Bakeev, Vysokomol. Soedin., Ser. C 47, 1332 (2005) [Polymer Science, Ser. C 47, 74 (2005].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.L. Volynskii, T.E. Grokhovskaya, A.I. Kulebyakina, A.V. Bol’shakova, L.M. Yarysheva, D.A. Panchuk, A.V. Efimov, N.F. Bakeev, 2006, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2006, Vol. 48, No. 5, pp. 823–833.

This work was supported by the Russian Foundation for Basic Research, project nos. 03-03-32748 and 05-03-32538.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volynskii, A.L., Grokhovskaya, T.E., Kulebyakina, A.I. et al. Visualization of strain-induced structural rearrangements in amorphous poly(ethylene terephthalate). Polym. Sci. Ser. A 48, 527–535 (2006). https://doi.org/10.1134/S0965545X06050105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X06050105

Keywords

Navigation