Skip to main content
Log in

Hydrodeoxygenation of Palmitic and Stearic Acids on Phosphide Catalysts Obtained In Situ in Reaction Medium

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Unsupported phosphide catalysts of composition Ni2P and CoP are prepared in situ in the reaction medium from oil-soluble precursors in the course of hydrodeoxygenation of palmitic and stearic acids. The obtained catalysts are characterized by X-ray powder diffraction and X-ray photoelectron spectroscopy; they show high activity in the hydrodeoxygenation of model substrates. After 6 h of the hydrodeoxygenation reactions, the conversion of palmitic acid reaches 93 and 92% and the conversion of stearic acid is as high as 94 and 91% in the presence of nickel phosphide and cobalt phosphide, respectively. It is shown that the catalyst formed in situ can be isolated and recycled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. https://www.uop.com/processing-solutions/renewables/green-diesel.

REFERENCES

  1. F. Ma and M. A. Hanna, Bioresour. Technol. 70, 1–15 (1999). https://doi.org/10.1016/S0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  2. T. N. Kalnes, T. Marker, D. R. Shonnard, and K. P. Koers, Biofuels Technol. 4, 7–11 (2008).

    Google Scholar 

  3. W. Zhou, H. Xin, H. Yang, et al., Catalysts 8, 153–172 (2018). https://doi.org/10.3390/catal8040153

    Article  CAS  Google Scholar 

  4. L. Hermida, A. Z. Abdullah, and A. R. Mohamed, Renewable Sustainable Energy Rev. 42, 1223–1233 (2015). https://doi.org/10.1016/j.rser.2014.10.099

    Article  CAS  Google Scholar 

  5. H. Xin, K. Guo, H. Yang, and C. Hu, Appl. Catal., B 187, 375–385 (2016). https://doi.org/10.1016/j.apcatb.2016.01.051

    Article  CAS  Google Scholar 

  6. A. Srifa, K. Faungnawakij, V. Itthibenchapong, and S. Assabumrungrat, Chem. Eng. J. 278, 249–258 (2015). https://doi.org/10.1016/j.cej.2014.09

    Article  CAS  Google Scholar 

  7. M. Peroni, I. Lee, X. Huang, et al., ACS Catal. 7, 6331–6341 (2017). https://doi.org/10.1021/acscatal.7b01294

    Article  CAS  Google Scholar 

  8. J. K. Satyarthi, T. Chiranjeevi, D. T. Gokak, and P. S. Viswanathan, Catal. Sci. Technol. 3, 70–80 (2013). https://doi.org/10.1039/c2cy20415k

    Article  CAS  Google Scholar 

  9. M. C. Alvarez-Galvan, G. Blanco-Brieva, M. Capel-Sanchez, et al., Catal. Today 302, 242–249 (2018). https://doi.org/10.1016/j.cattod.2017.03.031

    Article  CAS  Google Scholar 

  10. P. S. Sukhija and D. L. Palmquist, J. Agric. Food Chem. 36, 1202–1206 (1988). https://doi.org/10.1021/jf00084a019

    Article  CAS  Google Scholar 

  11. S. Izhar and M. Nagai, Catal. Today 146, 172–176 (2009). https://doi.org/10.1016/j.cattod.2009.01.036

    Article  CAS  Google Scholar 

  12. Y. Pan, Y. Liu, J. Zhao, et al., J. Mater. Chem. A 3, 1656–1665 (2015). https://doi.org/10.1039/c4ta04867a

    Article  CAS  Google Scholar 

  13. A. Infantes-Molina, E. Gralberg, J. A. Cecilia, et al., Catal. Sci. Technol. 5, 3403–3415 (2015). https://doi.org/10.1039/c5cy00282f

    Article  CAS  Google Scholar 

  14. M. Peroni, G. Mancino, E. Baráth, et al., Appl. Catal., B 180, 301–311 (2016). https://doi.org/10.1016/j.apcatb.2015.06.042

    Article  CAS  Google Scholar 

  15. K. Li, R. Wang, and J. Chen, Energy Fuels 25, 854–863 (2011). https://doi.org/10.1021/ef101258j

    Article  CAS  Google Scholar 

  16. Y.-K. Lee and S. T. Oyama, J. Catal. 239, 376–389 (2006). https://doi.org/10.1016/j.jcat.2005.12.029

    Article  CAS  Google Scholar 

  17. I. I. Abu and K. J. Smith, Appl. Catal., A 328, 58–67 (2007). https://doi.org/10.1016/j.apcata.2007.05.018

    Article  CAS  Google Scholar 

  18. J. A. Cecilia, A. Infantes-Molina, E. Rodríguez-Castellón, et al., Appl. Catal., B 136–137, 140–149 (2013). https://doi.org/10.1016/j.apcatb.2013.01.047

    Article  CAS  Google Scholar 

  19. M. E. Bussell, React. Chem. Eng. 2, 628–635 (2017). https://doi.org/10.1039/C7RE00098G

    Article  CAS  Google Scholar 

  20. J. Chen, H. Shi, L. Li, and K. Li, Appl. Catal., B 144, 870–884 (2014). https://doi.org/10.1016/j.apcatb.2013.08.026

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Program of TIPS RAS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Golubeva.

Ethics declarations

CONFLICT OF INTEREST

A.L. Maximov is the editor-in-chief of the journal Petroleum Chemistry; M.A. Golubeva declares that there is no conflict of interest.

ADDITIONAL INFORMATION

M.A. Golubeva, ORCID: http://orcid.org/0000-0002-3741-7833

A.L. Maximov, ORCID: http://orcid.org/0000-0001-9297-4950

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, M.A., Maksimov, A.L. Hydrodeoxygenation of Palmitic and Stearic Acids on Phosphide Catalysts Obtained In Situ in Reaction Medium. Pet. Chem. 59, 1326–1330 (2019). https://doi.org/10.1134/S0965544119120041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119120041

Keywords:

Navigation