Skip to main content
Log in

Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Techniques that improve the accuracy of numerical solutions and reduce their computational costs are discussed as applied to continuum mechanics problems with complex time-varying geometry. The approach combines shock-capturing computations with the following methods: (1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive meshes for minimizing the approximation errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit–implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov–Galerkin method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of solutions for providing their monotonicity and conservativeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. G. Burago and V. N. Kukudzhanov, “A review of contact algorithms,” Mech. Solids 40 (1), 35–71 (2005).

    Google Scholar 

  2. Methods in Computational Physics: Advances in Research and Applications, Vol. 3: Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1964; Mir, Moscow, 1967).

  3. Numerical Methods in Fluid Mechanics, Ed. by O.M. Belotserkovskii (Mir, Moscow, 1973) [in Russian].

  4. O. M. Belotserkovskii and Yu. M. Davydov, Large-Particle Method in Gas Dynamics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  5. S. K. Godunov and G. P. Prokopov, “The use of moving meshes in gas-dynamical computations,” USSR Comput. Math. Math. Phys. 12 (2), 182–195 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. M. Kovenya and N. N. Yanenko, Splitting Methods in Gas Dynamics Applications (Nauka, Novosibirsk, 1981) [in Russian].

    MATH  Google Scholar 

  7. L. V. Kruglyakova, A. V. Neledova, V. F. Tishkin, and A. Yu. Filatov, “Unstructured adaptive meshes for problems in mathematical physics,” Mat. Model. 10 (3), 93–116 (1997).

    MathSciNet  MATH  Google Scholar 

  8. A. N. Gil’manov, Adaptive Grid Methods in Gas Dynamics Applications (Fizmatlit, Moscow, 2000) [in Russian].

    MATH  Google Scholar 

  9. G. P. Prokopov, Preprint IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2006).

    Google Scholar 

  10. V. D. Liseikin, “The construction of structured adaptive grids—a review,” Comput. Math. Math. Phys. 36 (1), 1–32 (1996).

    MathSciNet  Google Scholar 

  11. S. A. Ivanenko, “Variational methods for adaptive grid generation,” Comput. Math. Math. Phys. 43 (6), 793–806 (2003).

    MathSciNet  Google Scholar 

  12. V. G. Bazhenov, V. L. Kotov, and S. V. Zefirov, “Matching of various difference schemes in nonstationary continuum mechanics problems by the method of overlapping meshes,” Vestn. Nizhegor. Univ. Ser. Mekh. 7 (1), 134–140 (2006).

    Google Scholar 

  13. B. N. Azarenok, On Adaptive Moving Mesh Generation (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2007) [in Russian].

    Google Scholar 

  14. Advances in Grid Generation, Ed. by O. V. Ushakova (Nova Science, New York, 2007).

  15. A. V. Minakov, A. A. Gavrilov, and A. A. Dekterev, “Numerical algorithm for solving three-dimensional fluid dynamics problems with moving solid bodies and free surface,” Sib. Zh. Ind. Mat. 11, (4), 94–104 (2008).

    MathSciNet  MATH  Google Scholar 

  16. V. N. Kukudzhanov, Numerical Continuum Mechanics (Fizmatlit, Moscow, 2008; Walter de Gruyter, Berlin, 2013).

    MATH  Google Scholar 

  17. V. D. Liseikin, Grid Generation Methods (Springer, Berlin, 2010).

    Book  MATH  Google Scholar 

  18. N. G. Burago, “Formulation of basic equations for continuum mechanics in moving adaptive coordinates, in Numerical Methods in Solid Mechanics, Ed. by G. I. Pshenichnov (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1984), pp. 32–49 [in Russian].

    Google Scholar 

  19. N. G. Burago and S. A. Ivanenko, “Application of elasticity equations to adaptive grid generation,” Proceedings of All-Russia Conference on Applied Geometry, Grid Generation, and High-Performance Computations, Moscow, Computing Center of the Russian Academy of Sciences, June 28–July 1, 2004, Ed. by V. A. Garanzha (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2004), pp. 107–118.

    Google Scholar 

  20. A. N. Brooks and T. J. R. Hughes, “Streamline upwind Petrov–Galerkin formulation for convection dominated flows,” Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. J. Le Beau, S. E. Ray, S. K. Aliabadi, and T.-E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations,” Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993).

    Article  MATH  Google Scholar 

  22. N. G. Bourago, A. I. Glushko, and A. N. Kovshov, “Thermodynamic method for constructing constitutive relations for models of continuous media,” Mech. Solids 35 (6), 1–9 (2000).

    Google Scholar 

  23. G. Strang and G. J. Fix, An Analysis of the Finite Element Method (Prentice Hall, Englewood Cliffs, N.J., 1973; Mir, Moscow, 1977).

    MATH  Google Scholar 

  24. N. G. Burago, “Modeling of elastoplastic fracture,” Vychisl. Mekh. Sploshn. Sred 1 (4), 5–20 (2008).

    Google Scholar 

  25. N. G. Burago and I. S. Nikitin, http://engjournal.ru/catalog/mathmodel/hidden/883.html

  26. N. G. Burago, I. S. Nikitin, and V. L. Yakushev, “Numerical modeling of sintering of powder materials under moving laser actions,” Vestn. Kibern., No. 3, 12–23 (2014).

    Google Scholar 

  27. N. G. Burago and V. N. Kukudzhanov, “Numerical solution of elastic plastic problems by FEM: ASTRA software package,” in Computational Solid Mechanics (Nauka, Moscow, 1991), Vol. 2, pp. 78–122 [in Russian].

    Google Scholar 

  28. A. A. Samarskii and B. D. Moiseenko, “An economic continuous calculation scheme for the Stefan multidimensional problem,” USSR Comput. Math. Math. Phys. 5 (5), 43–58 (1965).

    Article  MathSciNet  Google Scholar 

  29. J. H. Wilkinson and C. Reinsch, Handbook for Automatic Computation, Vol. 2: Linear Algebra (Springer-Verlag, Berlin, 1971; Mashinostroenie, Moscow, 1976).

    Book  Google Scholar 

  30. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).

    MATH  Google Scholar 

  31. E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers (Boole, Dublin, 1980; Mir, Moscow, 1983).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Burago.

Additional information

Dedicated to the memory of O.M. Belotserkovskii

Original Russian Text © N.G. Burago, I.S. Nikitin, V.L. Yakushev, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 6, pp. 1082–1092.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burago, N.G., Nikitin, I.S. & Yakushev, V.L. Hybrid numerical method with adaptive overlapping meshes for solving nonstationary problems in continuum mechanics. Comput. Math. and Math. Phys. 56, 1065–1074 (2016). https://doi.org/10.1134/S0965542516060105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516060105

Keywords

Navigation