Skip to main content
Log in

Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The natural Hamiltonian systems (systems with separable Hamiltonians) are considered. The variety of explicit three-stage symplectic schemes is described. A classification of the third-order accurate schemes is given. All fourth-order schemes are found (there are seven of them). It is proved that there are no fifth-order schemes. The schemes with improved properties, such as invertibility and optimality with respect to the phase error, are listed. Numerical results that demonstrate the properties of these schemes are presented, and their comparative analysis with respect to the accuracy–efficiency criterion is given. The disbalance of total energy is used as the accuracy criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974; Springer, New York, 1989).

    Book  MATH  Google Scholar 

  2. Yu. B. Suris, “On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems,” in Numerical Solution of Ordinary Differential Equations (Institut Prikladnoi Matematiki, Ross. Akad. Nauk, Moscow, 1988), pp. 148–160.

    Google Scholar 

  3. J. M. Sanz-Serna, “Runge–Kutta schemes for Hamiltonian system,” BIT 28, 877–883 1988.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. G. Elenin and P. I. Shlyakhov, “The geometric stricture of the parameter space of the three-stage symplectic Runge–Kutta methods,” Math. Models Comput. Simul. 3, 680–689 2011.

    Article  MathSciNet  Google Scholar 

  5. H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations,” Comput. J. 5 (4), 329–330 1963.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, and A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems,” Comput. Math. Math. Phys. 46, 1320–1340 2006.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Verlet, “Computer “experiments” on classical fluids. Thermodynamical properties of Lennard–Jones molecules,” Phys. Rev. 159 (1), 98–103 1967.

    Article  Google Scholar 

  8. Yu. B. Suris, “On the canonicity of maps generated by Runge–Kutts type methods in the integration of systems x=-∂U/∂x,” Zh. Vychisl. Mat. Mat. Fiz., 29 (2), 202–211 1989.

    MathSciNet  MATH  Google Scholar 

  9. E. A. Al’shina, E. M. Zaks, and N. N. Kalitkin, “Optimal first- to sixth-order accurate Runge–Kutta schemes,” Comput. Math. Math. Phys. 48, 395–407 2008.

    Article  MathSciNet  Google Scholar 

  10. I. V. Arzhantsev, Gröbner Bases and Systems of Algebraic Equations (Mosk. Tsentr Nepreryvnogo Mat. Obrazovaniya, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  11. http//wwwmaplesoftcom

  12. V. N. Sofronov, K. S. Mokina, and V. E. Shemarulin, “Difference schemes in molecular dynamics: 1. A comparative analysis of accuracy, stability, and efficiency,” Vopr. Atomn. Nauki Tekhn., Ser. Mat. Modelir Fiz. Prots., No. 2, 18–32 2011.

    Google Scholar 

  13. E. Forest and R. D. Ruth, “Fourth–order symplectic integration,” Physica D. 43, 105–117 1990.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Candy and W. Rozmus, “A symplectic integration algorithm for separable Hamiltonian function,” J. Comput. Phys. 92, 230–256 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations (Springer, Berlin, 1987–1991; Mir, Moscow, 1990).

    MATH  Google Scholar 

  16. G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Math. Models Comput. Simul. 5, 305–333 2012.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Rougier, A. Munjiza, and N. W. M. John, “Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics,” Int. J. Numer. Meth. Eng. 61, 856–879 2004.

    Article  MATH  Google Scholar 

  18. C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics (Springer, Berlin, 1995; TITs Regular and Chaotic Mechanics, Izhevsk, 2001).

    MATH  Google Scholar 

  19. V. E. Shemarulin, V. N. Sofronov, and K. S. Mokina, “Difference schemes in molecular dynamics: 2. A system of 2D tests,” Vopr. Atomn. Nauki Tekhn., Ser. Mat. Modelir Fiz. Prots., No. 3, 3–15 2011.

    Google Scholar 

  20. M. A. Lopez-Marcos, J. M. Sanz-Serna, and R. D. Skeel, “Are Gauss–Legendre methods useful in molecular dynamics?” J. Comput. Appl. Math. 67, 173–179 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems (Chapman and Hall, London, 1984).

    MATH  Google Scholar 

  22. G. E. Norman and A. V. Timofeev, “Application of the notion of “temperature” for description of dust particles dynamics in a gas-discharge plasma,” Dokl. Phys. 446 (4), 393–397 2012.

    MATH  Google Scholar 

  23. S. D. Bond and B. J. Leimkuhler, “Molecular dynamics and the accuracy of numerically computed averages,” Acta Numerica 5, 1–65 2007.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sofronov.

Additional information

Original Russian Text © V.N. Sofronov, V.E. Shemarulin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 4, pp. 551–571.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofronov, V.N., Shemarulin, V.E. Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems. Comput. Math. and Math. Phys. 56, 541–560 (2016). https://doi.org/10.1134/S0965542516040138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516040138

Keywords

Navigation