Skip to main content
Log in

Numerical solution of differential-algebraic equations using the spline collocation-variation method

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Numerical methods for solving initial value problems for differential-algebraic equations are proposed. The approximate solution is represented as a continuous vector spline whose coefficients are found using the collocation conditions stated for a subgrid with the number of collocation points less than the degree of the spline and the minimality condition for the norm of this spline in the corresponding spaces. Numerical results for some model problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996; Mir, Moscow, 1999).

    Book  MATH  Google Scholar 

  2. H. G. Bock, J. P. Schloder, and V. H. Schulz, Preprint No. 96-58 (SFB, Heidelberg, 1996).

  3. V. V. Dikusar, M. Kosh’ka, and A. Figura, Continuation Methods for Applied Optimal Control (MFTI, Moscow, 2001) [in Russian].

    Google Scholar 

  4. Yu. E. Boyarnintsev, Regular and Singular Systems of Ordinary Differential Equations (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  5. K. E. Brenan, S. L. Campbell, and L. R. Petzold, “Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations,” (SIAM, Philadelphia, 1996).

    MATH  Google Scholar 

  6. O. A. Balyshev and E. A. Tairov, Analysis of Transient and Stationary Processes in Pipeline Systems (Theoretical and Experimental Aspects) (Nauka, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  7. E. I. Ushakov, Static Stability of Electric Systems (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  8. J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design (Radio i Svyaz’, Moscow, 1988; Booknews, Portland, 1993).

    Google Scholar 

  9. E. Hairer, C. Lubich, and M. Roche, The numerical Solution of Differential-Algebraic Equations by Runge-Kutta Methods (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  10. E. Griepentrog and R. März, Differential-Algebraic Equations and Their Numerical Treatment (Teubner, Leipzig, 1986).

    MATH  Google Scholar 

  11. M. V. Bulatov, “Transformation of differential-algebraic systems of equations,” Comput. Math. Math. Phys. 34, 301–311 (1994).

    MathSciNet  Google Scholar 

  12. V. F. Chistyakov, Preprint No. 5, IrVTs SO AN SSSR (Irkutsk Computing Center, Siberian Branch, USSR Academy of Sciences, Irkutsk, 1986).

  13. S. L. Campbell, “Non-BDF methods for the solution of linear time varying implicit differential equations,” Proceedings of American Control Conference, San Diego, California, June 5–6 (San Diego, 1984), Vol. 3, pp. 1315–1318.

    Google Scholar 

  14. V. F. Chistyakov, Differential-Algebraic Operators with a Finite-Dimensional Kernel (Nauka, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  15. V. K. Gorbunov and Yu. V. Martynenko, “Method of variational splines for implicit differential equations,” Vestn. Samar. Gos. Tekh. Univ. Ser. Mat. 6(2), 16–28 (2007).

    Google Scholar 

  16. V. K. Gorbunov and V. V. Petrishchev, “Development of the method of normal spline collocation for linear differential equations,” Comput. Math. Math. Phys. 43, 1099–1108 (2003).

    MathSciNet  Google Scholar 

  17. V. K. Gorbunov and V. Yu. Sviridov, “The method of normal splines for linear DAEs on the number semiaxis,” Appl. Numer. Math. 59, 656–670 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Kunkel and V. Mehrmann, “Stability properties of differential-algebraic equations and spin-stabilized discretizations,” Electr. Trans. Numer. Anal. 26, 385–420 (2007).

    MathSciNet  MATH  Google Scholar 

  19. R. März, “Differential-algebraic systems anew,” Appl. Numer. Math. 42, 315–335 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. B. Stechkin and Yu. N. Subbotin, Splines in Numerical Mathematics (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  21. G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1980; Springer-Verlag, New York, 1982).

    MATH  Google Scholar 

  22. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1986).

    MATH  Google Scholar 

  23. M. V. Bulatov and Ming-Gong Lee, “Application of matrix polynomials to the analysis of linear differential-algebraic equations of higher order,” Differ. Equations 44, 1353–1360 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bulatov.

Additional information

Original Russian Text © M.V. Bulatov, N.P. Rakhvalov, L.S. Solovarova, 2013, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2013, Vol. 53, No. 3, pp. 377–389.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulatov, M.V., Rakhvalov, N.P. & Solovarova, L.S. Numerical solution of differential-algebraic equations using the spline collocation-variation method. Comput. Math. and Math. Phys. 53, 284–295 (2013). https://doi.org/10.1134/S0965542513030044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542513030044

Keywords

Navigation