Skip to main content
Log in

Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The internal polyhedral approximation of convex compact bodies with twice continuously differentiable boundaries and positive principal curvatures is considered. The growth of the number of facets in the class of Hausdorff adaptive methods of internal polyhedral approximation that are asymptotically optimal in the growth order of the number of vertices in approximating polytopes is studied. It is shown that the growth order of the number of facets is optimal together with the order growth of the number of vertices. Explicit expressions for the constants in the corresponding bounds are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Minkowski, “Volumen und Oberflähe,” Math. Ann. 57, 447–497 (1903).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. D. Alexandrov, Selected Works Part II: Intrinsic Geometry of Convex Surfaces (Gostekhteorizdat, Moscow, 1948; Chapman and Hall/CRC, Boca Raton, 2006).

    Google Scholar 

  3. P. M. Gruber, “Aspects of Approximation of Convex Bodies,” in Handbook of Convex Geometry, Ed. by P. M. Gruber and J. M. Willis (Elsevier Science, Amsterdam, 1993), Ch. 1.10, pp. 321–345.

    Google Scholar 

  4. E. M. Bronshtein, “Polyhedral Approximation of Convex Sets,” Sovrem. Mat. Fundam. Napravlen. 22, 5–37 (2007).

    Google Scholar 

  5. K. Böröczky, Jr., “Polytopal Approximation Bounding the Number of k-Faces,” J. Approx. Theory 102, 263–285 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. K. J. Böröczky, F. Fodov, and V. Vigh, “Approximating 3-Dimensional Convex Bodies by Polytopes with a Restricted Number of Edges,” Beit. Alg. Geom. 49, 177–193 (2008).

    MATH  Google Scholar 

  7. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969; Gordon & Breach, New York, 1986).

    Google Scholar 

  8. G. Sonnevend, “An Optimal Sequential Algorithm for the Uniform Approximation of Convex Functions on [0, 1],” Appl. Math. Optim., No. 10, 127–142 (1983).

  9. N. N. Moiseev, Mathematical Problems in System Analysis (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  10. A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Search for Balanced Tradeoff: The Feasible Goals Method (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  11. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps: Approximation and Visualization of Pareto Frontier (Kluwer Academic, Boston, 2004).

    MATH  Google Scholar 

  12. V. A. Bushenkov and A. V. Lotov, Methods for the Construction and Use of Generalized Reachable Sets (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1982) [in Russian].

    Google Scholar 

  13. G. K. Kamenev, “On a Class of Adaptive Schemes for Polyhedral Approximation of Convex Bodies,” in Mathematical Modeling and Discrete Optimization (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1988), pp. 3–9 [in Russian].

    Google Scholar 

  14. G. K. Kamenev, “On a Class of Adaptive Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 32, 136–152 (1992).

    MathSciNet  MATH  Google Scholar 

  15. G. K. Kamenev, “On the Efficiency of Hausdorff Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 33, 796–805 (1993).

    MathSciNet  MATH  Google Scholar 

  16. G. K. Kamenev, “Efficient Algorithms for Approximation of Nonsmooth Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 39, 446–450 (1999) [Comput. Math. Math. Phys. 39, 423–427 (1999)].

    MathSciNet  Google Scholar 

  17. G. K. Kamenev, “On the Approximation Properties of Nonsmooth Convex Disks,” Zh. Vychisl. Mat. Mat. Fiz. 40, 1464–1474 (2000) [Comput. Math. Math. Phys. 40, 1404–1414 (2000)].

    MathSciNet  Google Scholar 

  18. R. V. Efremov and G. K. Kamenev, “A priori Estimate for Asymptotic Efficiency of One Class of Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 42, 23–32 (2002) [Comput. Math. Math. Phys. 42, 20–29 (2002)].

    MathSciNet  MATH  Google Scholar 

  19. S. M. Dzholdybaeva and G. K. Kamenev, “Numerical Study of the Efficiency of a Polyhedral Approximation Algorithm for Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 32, 857–866 (1992).

    MathSciNet  Google Scholar 

  20. G. K. Kamenev, Optimal Adaptive Methods for Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  21. E. M. Bronshtein and L. D. Ivanov, “On Polyhedral Approximation of Convex Sets,” Sib. Mat. Zh. 26, 1110–1112 (1975).

    Google Scholar 

  22. R. Dudley, “Metric Entropy of Some Classes of Sets with Differentiable Boundaries,” J. Approx. Theory 10, 227–236 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. M. Gruber, “Asymptotic Estimates for Best and Stepwise Approximation of Convex Bodies I,” Forum Math., No. 5, 281–297 (1993).

  24. C. A. Rogers, Packing and Covering (Cambridge Univ. Press, Cambridge, 1964; Mir, Moscow, 1968).

    MATH  Google Scholar 

  25. J. H. Conway and N. Sloane, Sphere Packings, Lattices, and Groups (Springer-Verlag, New York, 1988; Mir, Moscow, 1990), Vol. 1.

    MATH  Google Scholar 

  26. K. Böröczky, Jr., “About the Error Term for Best Approximation with Respect to the Hausdorff Related Metrics,” Discrete Comput. Geom. 25, 293–309 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Bröndsted, An Introduction to Convex Polytopes (Springer-Verlag, New York, 1988; Mir, Moscow, 1988).

    MATH  Google Scholar 

  28. P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture (Cambridge Univ. Press, Cambridge, 1971).

    MATH  Google Scholar 

  29. R. V. Efremov and G. K. Kamenev, “Properties of a Method for Polyhedral Approximation of the Feasible Criterion Set in Convex Multiobjective Problems,” Ann. Operat. Res. 166, 271–279 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Blaschke, Kreis und Kugel (Chelsea, New York, 1949; Nauka, Moscow, 1967).

    MATH  Google Scholar 

  31. D. Koutroufiotis, “On Blaschke’s Rolling Theorems,” Arch. Math. 23, 655–660 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Schneider, “Closed Convex Hypersurfaces with Curvature Restrictions,” Proc. Am. Math. Soc. 103, 1201–1204 (1988).

    Article  MATH  Google Scholar 

  33. K. Leichtweiß, “Convexity and Differential Geometry,” in Handbook of Convex Geometry (Elsevier, Amsterdam, 1993), Ch. 4.1, pp. 1045–1080.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Kamenev.

Additional information

Original Russian Text © R.V. Efremov, G.K. Kamenev, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 6, pp. 1018–1031.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremov, R.V., Kamenev, G.K. Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies. Comput. Math. and Math. Phys. 51, 952–964 (2011). https://doi.org/10.1134/S0965542511060054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542511060054

Keywords

Navigation