Skip to main content
Log in

Explicit multistep method for the numerical solution of stiff differential equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An explicit multistep method of variable order for integrating stiff systems with high accuracy and low computational costs is examined. To stabilize the computational scheme, componentwise estimates are used for the eigenvalues of the Jacobian matrix having the greatest moduli. These estimates are obtained at preliminary stages of the integration step. Examples are given to demonstrate that, for certain stiff problems, the method proposed is as efficient as the best implicit methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Fedorenko, “Stiff Systems of Ordinary Differential Equations and Their Numerical Integration,” Computational Processes and Systems (Nauka, Moscow, 1991), Vol. 8, pp. 328–380 [in Russian].

    Google Scholar 

  2. V. I. Lebedev, “How to Solve Stiff Systems of Differential Equations by Explicit Methods,” Computational Processes and Systems (Nauka, Moscow, 1991), Vol. 8, 237–291 (in Russian].

    Google Scholar 

  3. E. A. Novikov, Explicit Methods for Stiff Systems (Nauka, Novosibirsk, 1997) [in Russian].

    MATH  Google Scholar 

  4. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996; Mir, Moscow, 1999).

    MATH  Google Scholar 

  5. V. I. Lebedev, “Explicit Difference Schemes for Solving Stiff Problems with a Complex or Separable Spectrum,” Zh. Vychisl. Mat. Mat. Fiz. 40, 1801–1812 (2000) [Comput. Math. Math. Phys. 40, 1729–1740 (2000)].

    Google Scholar 

  6. C. W. Gear and I. G. Kevrekidis, “Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum,” SIAM J. Sci. Comput. 24, 1091–1106 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. M. E. Fowler and R. M. Warten, “A Numerical Integration Technique for Ordinary Differential Equations with Widely Separated Eigenvalues,” IBM J. Res. Develop. 11, 537–543 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. V. Bobkov, “New Explicit A-Stable Numerical Methods for Differential Equations,” Differ. Uravn. 14, 2249–2251 (1978).

    MATH  MathSciNet  Google Scholar 

  9. Stiff Computations, Ed. by R. C. Aiken (Oxford Univ. Press, New York, 1985).

    Google Scholar 

  10. A. N. Zavorin, “Application of Nonlinear Methods to Computing Transient Processes in Electric Circuits,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 26(3), 35–41 (1983).

    Google Scholar 

  11. L. M. Skvortsov, “Adaptive Numerical Integration Methods for Modeling Dynamical Systems,” Izv. Ross. Akad. Nauk, Teor. Sist. Upr., No. 4, 72–78 (1999).

  12. L. M. Skvortsov, “Explicit Adaptive Numerical Integration Methods for Stiff Systems,” Mat. Model. 12(12), 97–107 (2000).

    MATH  MathSciNet  Google Scholar 

  13. X. Y. Wu and J. L. Xia, “Two Low Accuracy Methods for Stiff Systems,” Applied Math. Comput. 123, 141–153 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. L. M. Skvortsov, “Accuracy of Runge-Kutta Methods Applied to Stiff Problems,” Zh. Vychisl. Mat. Mat. Fiz. 43, 1374–1384 (2003) [Comput. Math. Math. Phys. 43, 1320–1330 (2003)].

    MATH  MathSciNet  Google Scholar 

  15. Yu. V. Rakitskii, S. M. Ustinov, and I. G. Chernorutskii, Numerical Methods for Stiff Systems (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  16. J. Martin-Vaquero and J. Vigo-Aguiar, “Exponential Fitting BDF Algorithms: Explicit and Implicit 0-Stable Methods,” J. Comput. Appl. Math. 192(1), 100–113 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Hairer, S. P. Nörsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems (Springer-Verlag, Berlin, 1987; Mir, Moscow, 1990).

    MATH  Google Scholar 

  18. O. S. Kozlov, L. M. Skvortsov, and V. V. Khodakovskii, “Solving Differential and Differential Algebraic Equations in Software Package MVTU,” http://model.exronenta.ru/mvtu/20051121.html.

  19. O. S. Kozlov and L. M. Skvortsov, “Test Comparison of ODE Solvers in MATLAB,” All-Russia Scientific Conference on Scientific and Engineering Design in MATLAB (Inst. Prikl. Upr., Ross. Akad. Nauk, Moscow, 2002), pp. 53–60 [in Russian]; http://matlab.exponenta.ru/conf2002/proceedings.php.

    Google Scholar 

  20. “Test Set for Initial Value Problem Solvers,” Release 2.2., August 2003; http://www.dm.uniba.it/:_testset.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.M. Skvortsov, 2007, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2007, Vol. 47, No. 6, pp. 959–967.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skvortsov, L.M. Explicit multistep method for the numerical solution of stiff differential equations. Comput. Math. and Math. Phys. 47, 915–923 (2007). https://doi.org/10.1134/S0965542507060036

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542507060036

Keywords

Navigation