Skip to main content
Log in

Effect of viscous dissipation on temperature, viscosity, and flow parameters while filling a channel

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

A non-steady, non-isothermal flow while filling a channel is studied with account for dissipation of mechanical energy, dependency of viscosity on temperature, and existence of free surface. Simulation results are presented for fields of temperature, viscosity, dynamic and kinematic parameters of flow as a function of key dimensionless parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Kamal, A.I., Isayev, and S.-J. Liu, Injection Molding: Technology and Fundamentals, Carl Hancer Verlag, Munich, 2009.

    Book  Google Scholar 

  2. R.V. Torner, Theoretical Principles of Polymer Processing: Mechanics of Processes, Khimia, Moscow, 1977.

    Google Scholar 

  3. Z. Tadmor and C.G. Gogos, Principles of Polymer Processing, John Wiley & Sons, N.Y. etc., 1979.

    Google Scholar 

  4. D.J. Coyle, J.W. Blake, and C.W. Macosco, The kinematics of fountain flow in mold filling, AIChE J., 1987, Vol. 33, No. 7, P. 1168–1177.

    Article  Google Scholar 

  5. H. Mavridis, Finite element studies in injection mold filling, Ph.D. Thesis, McMaster Univ., Hamilton, Ont., Canada, 1988.

    Google Scholar 

  6. G.P. Shrager, A.N. Kozloborodov, and V.A. Yakutenok, Simulation of Hydrodynamic Processes in Polymer Material Processing, Tomsk Univer. Publisher, Tomsk, 1999.

    Google Scholar 

  7. E. Mitsoulis, Fountain flow revisited: the effect of various fluid mechanics parameters, AIChE J., 2010, Vol. 56, No. 5, P. 1147–1162.

    Google Scholar 

  8. A.M. Stolin, A.Ya. Malkin, and A.G. Merzhanov, Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers, Russian Chemical Reviews, 1979, Vol. 48, No. 8, P. 798–811.

    Article  ADS  Google Scholar 

  9. A.V. Baranov, Non-isothermal flow of rheological complex media taking into account of chemical conversions, J. on Composite Mechanics and Design, 2010, Vol. 16, No.3, P. 384–399.

    Google Scholar 

  10. H. Hassan, N. Regnier, C. Pujos, and G. Defaye, Effect of viscous dissipation on the temperature of the polymer during injection molding filling, Polym. Engng. Sci., 2008, Vol. 48, No. 6, P. 1199–1206.

    Article  Google Scholar 

  11. J. PrimoBenitez-Rangel, A. Dominguez-Gonzalez, G. Herrera-Ruiz, and M. Delgado-Rosas, Filling process in injection mold: a review, Polymer-Plastics Technology and Engng., 2007, Vol. 46, No. 7, P. 721–727.

    Article  Google Scholar 

  12. A.M. Lipanov, M.Yu. Alies, and Yu.N. Konstantinov, Numerical simulation of creep flow for non-Newtonian fluids with free interface, Mat. Modelirovanie, 1993, Vol. 5, No. 7, P. 3–9.

    MATH  Google Scholar 

  13. T. Nguyen-Chung and G. Mennig, Non-isothermal transient flow and molecular orientation during injection mold filling, Rheol. Acta, 2001, Vol. 40, No. 1, P. 67–73.

    Article  Google Scholar 

  14. R.E. Otmani, M. Zinet, M. Boutaous, and H. Benhadid, Numerical simulation and thermal analysis of the filling stage in injection molding process: role of the mold-polymer interface, J. Appl. Polym. Sci., 2011, Vol. 121, No. 3, P. 1579–1592.

    Article  Google Scholar 

  15. W. Wang, X. Li, and H. Xianhong, Numerical simulation and experimental verification of the filling stage in injection molding, Polym. Engng. Sci., 2012, Vol. 52, No. 1, P. 42–51.

    Article  Google Scholar 

  16. V.I. Yankov, V.I. Boyarchenko, V.P. Pervadchuk, I.O. Glot, and N.V. Shakirov, Processing of fiber-shaping polymers. Polymer rheology foundations and polymer flow in channels, Moscow-Izhevsk: Regular and Random Dynamics, 2008.

    Google Scholar 

  17. V.A. Yakutenok and E.I. Borzenko, Numerical simulation of viscous incompressible liquid with free interface using the SIMPLE method, Mat. Modelirovanie, 2007, Vol. 19, No. 3, P. 52–58.

    MATH  Google Scholar 

  18. I.M. Vasenin, A.P. Nefedov, and G.R. Shrager, Method for simulation of viscous fluid flow with free interface, Chislennye Metody Mekhaniki Sploshnoi Sredy, Novosibirsk: CC SB AS, 1985, Vol. 16, No. 6, P. 28–43.

    MathSciNet  Google Scholar 

  19. S. Patamkar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, 1980.

    Google Scholar 

  20. E.I. Borzenko and G.R. Shrager, Nonisothermal Viscous Fluid Flow during Filling a Plane Channel, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i mekhanika, 2012, Vol. 18, No. 2, P. 80–87.

    Google Scholar 

  21. P.V. Roache, Fundamental of Computational Fluid Dynamics, Hermosa Publ., New Mexico, 1998.

    Google Scholar 

  22. S.A. Kaganov, About steady laminar flow of incompressible liquid in flat channel and round cylindrical tube with account for friction heat and dependency of viscosity on temperature, J. Appl. Mech Techn. Phys., 1962, No. 3, P. 96–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Borzenko.

Additional information

Research was financially supported by the Ministry of Education and Science (Agreement No. 14.B.37.21.0419) and RFBR (Project No. 12-08-00313a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenko, E.I., Shrager, G.R. Effect of viscous dissipation on temperature, viscosity, and flow parameters while filling a channel. Thermophys. Aeromech. 21, 211–221 (2014). https://doi.org/10.1134/S0869864314020073

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864314020073

Key words

Navigation