Skip to main content
Log in

The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat transfer

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

In the second part of review, we have considered the problems related to momentum and heat transfer in nanofluids. Results on hydrodynamic friction, forced and free convection in the laminar and turbulent flows are analysed; heat transfer at boiling is considered. The available models describing heat transfer intensification and suppression in nanofluids are studied. It is shown that for some problems on convective heat transfer there is a contradiction in data of different authors; possible reasons for this contradiction are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Abu-Nada, Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Inter. J. Heat Fluid Flow, 2008, Vol. 29, P. 242–249.

    Article  Google Scholar 

  • A. Ali, K. Vafai, and A.R.A. Khaled, Analysis of heat and mass transfer between air and falling film in a cross-flow configuration, Inter. J. Heat Mass Trans., 2004, Vol. 47, P. 743–755.

    Article  Google Scholar 

  • S.M. Aminossadati and B. Ghasemi, Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. — B/Fluids, 2009, Vol. 28, P. 630–640.

    Article  MATH  ADS  Google Scholar 

  • K.B. Anoop, T. Sundararajan, and S.K. Das, Effect of particle size on the convective heat transfer in nano-fluid in the developing region, Inter. J. Heat Mass Tran., 2009, Vol. 52, P. 2189–2195.

    Article  MATH  Google Scholar 

  • I.C. Bang and S.H. Chang, Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from a plain surface in a pool, Inter. J. Heat Mass Trans., 2005, Vol. 48, P. 2407–2419.

    Article  Google Scholar 

  • S.P. Bardakhanov and S.W. Joo, Hot-wire anemometry for velocity measurements in nanopowder flows, J. Fluid Engng., 2009, Vol. 131, 034501, 4 p.

  • A. Beskok and G.E. Karniadakis, A model for flows in channels, pipes, and ducts at micro and nanoscales, Microscale Therm. Engng., 1999, Vol. 3, P. 43–77.

    Article  Google Scholar 

  • A. Bozhko and G. Putin, Thermomagnetic convection as a tool for heat and mass transfer control in nanosize materials under microgravity conditions, Microgravity Sci. Technol., 2009, Vol. 21, P. 89–93.

    Article  Google Scholar 

  • J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer, 2006, V. 128, P. 240–250.

    Article  Google Scholar 

  • M. Chandrasekar and S. Suresh, A review on the mechanisms of heat transfer in nanofluids, Heat Transfer Engng., 2009, Vol. 30, No. 14, P. 1136–1150.

    Article  ADS  Google Scholar 

  • H. Chen and Y. Ding, Heat transfer and rheological behaviour of nanofluids: a review, in: Advances in Transport Phenomena, Springer-Verlag, 2009, Vol. 1, P.135–177.

    Google Scholar 

  • H.S. Chen, Y.L. Ding, and C.Q. Tan, Rheological behaviour of nanofluids, New J. Phys., 2007, Vol. 9, No. 367, 25 p.

  • P. Cheng, S. Choi, Y. Jaluria et al. Special issue on micro/nanoscale heat transfer. Part I, J. Heat Transfer, 2009, Vol. 131, No. 3, 030301, 1 p.

  • S.U.S. Choi, Nanofluids: from vision to reality through research, J. Heat Transfer, 2009, Vol. 131, 033106, 9 p.

  • R.V. Craster and O.K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys., 2009, Vol. 81, P. 1131–1198.

    Article  ADS  Google Scholar 

  • S.K. Das, S.U.S. Choi, W. Yu, and T. Pradeep, Nanofluids science and technology, Wiley-Interscience, New Jersey, 2007, 397 p.

    Book  Google Scholar 

  • S.K. Das, N. Putra, and W. Roetzel, Pool boiling characteristics of nanofluids, Inter. J. Heat Mass Tran., 2003, a, Vol. 46, P. 851–862.

    Article  Google Scholar 

  • S.K. Das, N. Putra, and W. Roetzel, Pool boiling of nanofluids on horizontal narrow tubes, Inter. J. Multiphas. Flow, 2003, b, Vol. 29, P. 1237–1247.

    Article  MATH  Google Scholar 

  • Y. Ding, H. Chen, L. Wang et al., Heat transfer intensification using nanofluids, KONA, 2007, No. 25, P. 23–36.

  • Y.L. Ding and D. Wen, Particle migration in a flow of nanoparticle suspensions, Powder Technol., 2005, Vol. 149, P. 84–92.

    Article  Google Scholar 

  • Y.L. Ding, H. Alias, D.S. Wen et al., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nano-fluids), Inter. J. Heat Mass Tran., 2006, Vol. 49, P. 240–250.

    Article  Google Scholar 

  • F. Dittus and L. Boelter, Heat transfer in automobile radiators of the tubular type, Univ. of California Publ. in Engng., 1930, Vol. 2, P. 443–461.

    Google Scholar 

  • G. Donzelli, R. Cerbino, and A. Vailati, Bistable heat transfer in a nanofluid, Phys. Rev. Lett., 2009, Vol. 102, 104503, 4 p.

    Article  ADS  Google Scholar 

  • J.A. Eastman, S.R. Phillpot, S.U.S. Choi, and P. Keblinski, Thermal transport in nanofluids, Annu. Rev. Mater. Res., 2004, Vol. 34, P. 219–246.

    Article  ADS  Google Scholar 

  • B. S. Fokin, M. Ya. Belenkiy, V. I. Almjashev et al., Critical heat flux in a boiling aqueous dispersion of nanoparticles, Tech. Phys. Let., 2009, Vol. 35, No. 5, P. 440–442.

    Article  Google Scholar 

  • M. Frank, D. Anderson, E.R. Weeks et al., Particle migration in pressure-driven flow of a Brownian suspension, J. Fluid Mech., 2003, Vol. 493, P. 363–378.

    Article  MATH  ADS  Google Scholar 

  • Y.R. He, Y. Jin, H.S. Chen et al., Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Inter. J. Heat Mass Trans., 2007, Vol. 50, P. 2272–2281.

    Article  MATH  Google Scholar 

  • S.Z. Heris, S.G. Etemad, and M.N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Inter. Commun. Heat Mass Trans., 2006, Vol. 33, P. 529–535.

    Article  Google Scholar 

  • K.S. Hwang, J.H. Lee, and S.P. Jang, Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Inter. J. Heat Mass Trans., 2007, Vol. 50, P. 4003–4010.

    Article  MATH  Google Scholar 

  • I.E. Idelchik, Handbook of hydraulic resistance, Hemisphere, Washington, 1986.

    Google Scholar 

  • J.Y. Jung, H.S. Oh, and H.Y. Kwak, Forced convective heat transfer of nanofluids in microchannels, Inter. J. Heat Mass Tran., 2009, Vol. 52, P. 466–472.

    Article  Google Scholar 

  • S. Kakac and A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Inter. J. Heat Mass Trans., 2009, Vol. 52, P. 3187–3196.

    Article  MATH  Google Scholar 

  • C. Kang, M. Okada, A. Hattori, and K. Oyama, Natural convection of water-fine particle suspension in a rectangular vessel heated and cooled from opposing vertical walls, Inter. J. Heat Mass Trans., 2001, Vol. 44, P. 2973–2982.

    Article  MATH  Google Scholar 

  • K. Khanafer, K. Vafai, and M. Lightstone, Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Inter. J. Heat Mass Trans., 2003, Vol. 46, P. 3639–3653.

    Article  MATH  Google Scholar 

  • J. Kim, Y.T. Kang, and C.K. Choi, Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, 2004, Vol. 16, P. 2395–2401.

    Article  ADS  Google Scholar 

  • G.H. Ko, K. Heo, K. Lee et al., An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube, Inter. J. Heat Mass Trans., 2007, Vol. 50, P. 4749–4753.

    Article  Google Scholar 

  • S. Krishnamurthy, P. Lhattacharya, P.E. Phelan et al., Enhanced mass transport in nanofluids, Nano Lett., 2006, Vol. 6, P. 419–423.

    Article  ADS  Google Scholar 

  • K. Kwak and C. Kim, Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea-Australia Rheol. J., 2005, Vol. 17, P. 35–40.

    Google Scholar 

  • Q. Li, Y. Xuan, J. Jiang et al., Experimental investigation on flow and convective heat transfer feature of a nanofluid for aerospace thermal management, J. Astronaut., 2005, Vol. 26, P. 391–394.

    Google Scholar 

  • L. Liao and Z.H. Liu, Forced convective flow drag and heat transfer characteristics of carbon nanotube suspensions in a horizontal small tube, Heat Mass Transfer, 2009, Vol. 45, P. 1129–1136.

    Article  ADS  Google Scholar 

  • Z.H. Liu and Y.H. Qiu, Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface, Heat Mass Transfer, 2007, Vol. 43, P. 699–706.

    Article  ADS  Google Scholar 

  • S.E. Maiga, C.T. Nguen, N. Galanis et al., Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, Inter. J. Num. Method. Heat Fluid Flow, 2006, Vol. 16, P. 275–292.

    Article  Google Scholar 

  • D. Merhi, E. Lemaire, G. Bossis, et al., Particle migration in a concentrated suspension flowing between rotating parallel plates: Investigation of diffusion flux coefficients, J. Rheol., 2005, Vol. 49, P. 1429–1448.

    Article  ADS  Google Scholar 

  • D. Milanova and R. Kumar, Role of ions in pool boiling heat transfer of pure and silica nanofluids, Appl. Phys. Lett., 2005, Vol. 87, 233107, 3 p.

    Google Scholar 

  • P.K. Namburu, D.P. Kulkarni, D. Misra et al., Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm. Fluid Sci., 2007, Vol. 32, P. 397–402.

    Article  Google Scholar 

  • A.G.A. Nanna, T. Fistrovich, K. Malinski et al., Thermal transport phenomena in buoyancy-driven nano-fluids, in: Proc. 2005 ASME Int. Mech. Engng. Cong., 15–17 November 2004, Anaheim, California, USA, 2005.

  • M. Okada and T. Suzuki, Natural convection of water-fine particle suspension in a rectangular cell, Int. J. Heat Mass Trans., 1997, Vol. 40, P. 3201–3208.

    Article  Google Scholar 

  • B. Pak and Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transfer, 1998, Vol. 11, P. 151–170.

    Article  ADS  Google Scholar 

  • G.P. Peterson and C.H. Li, Heat and mass transfer in fluids with nanoparticle suspensions, Adv. Heat Transfer, 2006, Vol. 39, P. 257–376.

    Google Scholar 

  • P.E. Phelan, P. Bhattacharya, and R.S. Prasher, Nanofluids for heat transfer applications, Annu. Rev. Heat Transfer, 2005, Vol. 14, P. 255–275.

    Google Scholar 

  • R.J. Phillips, R.C. Armstrong, R.A. Brown et al., A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration, Phys. Fluids, 1992, Vol. 4, P. 30–40.

    Article  MATH  ADS  Google Scholar 

  • R. Prasher, D. Song, and J. Wang, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 2006, Vol. 89, 133108, 3 p.

  • N. Putra, W. Roetzel, and S.K. Das, Natural convection of nanofluids, Heat Mass Transfer, 2003, Vol. 39, P. 775–784.

    Article  ADS  Google Scholar 

  • V.Y. Rudyak, A.A. Belkin, and V.V. Egorov, On the effective viscosity of nanosuspensions, Tech. Phys., 2009, Vol. 54, No. 8, P. 1102–1109.

    Article  Google Scholar 

  • R.B. Schoch, J.Y. Han, and P. Renaud, Transport phenomena in nanofluids, Rev. Mod. Phys., 2008, Vol. 80, P. 839–883.

    Article  ADS  Google Scholar 

  • E. Serre and P. Bontoux, Vortex breakdown in a cylinder with a rotating bottom and a flat stress-free surface, Int. J. Heat Fluid Flow, 2007, Vol. 28, P. 229–248.

    Article  Google Scholar 

  • C.J. Teo and B.C. Khoo, Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves, Microfluid. Nanofluid, 2009, Vol. 7, P. 353–382.

    Article  Google Scholar 

  • A.N. Turanov and Y.V. Tolmachev, Heat- and mass-transport in aqueous silica nanofluids, Heat Mass Transfer, 2009, Vol. 45, P. 1583–1588.

    Article  ADS  Google Scholar 

  • D.Y. Tzou, Thermal instability of nanofluids in natural convection, Inter. J. Heat Mass Trans., 2008, Vol. 51, P. 2967–2979.

    Article  MATH  Google Scholar 

  • P. Vassallo, R. Kumar, and S. D’Amico, Pool boiling heat transfer experiments in silica-water nanofluids, Inter. J. Heat Mass Tran., 2004, Vol. 47, P. 407–411.

    Article  Google Scholar 

  • B.X. Wang, L.P. Zhou, and X.F. Peng, Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspensions, Prog. Nat. Sci., 2004, Vol. 14, P. 922–926.

    Article  MATH  Google Scholar 

  • X. Wang, X. Xu, and S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Trans., 1999, Vol. 13, No. 4, P. 474–480.

    Article  Google Scholar 

  • X.Q. Wang and A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, Inter. J. Therm. Sci., 2007, Vol. 46, P. 1–19.

    Article  MATH  Google Scholar 

  • X.Q. Wang and A.S. Mujumdar, A review on nanofluids, Brazil. J. Chem. Eng., 2008, Vol. 25, P. 613–648.

    Google Scholar 

  • D.S. Wen and Y.L. Ding, Experiment investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Tran., 2004, Vol. 47, P. 5181–5188.

    Article  Google Scholar 

  • D.S. Wen and Y.L. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids, J. Nanopart. Res. 2005 a, Vol. 7, P. 265–274.

  • D.S. Wen and Y.L. Ding, Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat Fluid Flow, 2005 b, Vol. 26, P. 855–864.

    Article  Google Scholar 

  • D.S. Wen and Y.L. Ding, Natural convective heat transfer of suspensions of TiO2 nanoparticles (nanofluids), Trans. IEEE Nanotechnol., 2006, No. 5, P. 220–227.

  • W. Williams, J. Buongiorno, and L.W. Hu, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transfer, 2008, Vol. 130, 042412.

  • X.Y. Wu, H.Y. Wu, and P. Cheng, Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels, J. Micromech. Microengng., 2009, Vol. 19, 105020.

  • Y. Xuan and Q. Li, Flow and heat transfer performances of nanofluids inside small hydraulic diameter flat tube, J. Engng. Thermophys., 2004, Vol. 25, No. 2, P. 305–307.

    Google Scholar 

  • Y. Xuan and Q. Li, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, 2003, Vol. 125, P. 151–155.

    Article  Google Scholar 

  • Y. Xuan and W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Trans., 2000, Vol. 43, P. 3701–3707.

    Article  MATH  Google Scholar 

  • Y. Yang, Z.G. Zhang, E.A. Grulke et al., Heat transfer properties of nanoparticle-in-fluid dispersions (nano-fluids) in laminar flow, Int. J. Heat Mass Trans., 2005, Vol. 48, P. 1107–1116.

    Article  Google Scholar 

  • S.M. You, J.H. Kim, and K.H. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 2003, Vol. 83, P. 3374–3376.

    Article  ADS  Google Scholar 

  • W.H. Yu, D.M. France, J.L. Routbort et al., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engng., 2008, Vol. 29, No. 5, P. 432–460.

    Article  ADS  Google Scholar 

  • K. Zhang, B.J. Park, F.F. Fang et al., Sonochemical preparation of polymer nanocomposites, Molecules, 2009, Vol. 14, P. 2095–2110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Terekhov.

Additional information

The mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids, Thermophysics and Aeromechanics, 2010, Vol. 17, No. 1, P. 1–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terekhov, V.I., Kalinina, S.V. & Lemanov, V.V. The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat transfer. Thermophys. Aeromech. 17, 157–171 (2010). https://doi.org/10.1134/S0869864310020010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864310020010

Key words

Navigation