Skip to main content
Log in

Partial Melting of Carbonate–Biotite Gneiss at the Conditions of the Continental Crust: Experimental and Thermodynamic Modeling

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

One of the mechanisms explaining relationships between CO2-rich fluids and granitoid magmas at high-temperature crustal metamorphism is the melting of protoliths that originally contained carbonate minerals. In order to study the coupled processes of dehydration/decarbonation and melting, experiments were conducted with carbonate–biotite gneiss from an Archean greenstone belt at pressures of 6, 10, and 15 kbar in the temperature range of 800–950°C, and phase relations in this rock were modeled using the pseudo-section method. The experiments and modeling revealed a subvertical positive dP/dT slope of the solidus of the rock. In comparison to the calculated solidus temperatures, the experiments showed higher melting temperatures (~800°C at 6 kbar and ~850°C at 10 and 15 kbar). The products of the experiments at pressures of 6 and 10 kbar and temperatures >850°C were found out to contain assemblages of clinopyroxene, orthopyroxene, and ilmenite. The products of the experiments at 15 kbar did not contain either orthopyroxene or ilmenite, but calcium garnet and rutile were stable. The first portions of the near-solidus melts at 6 and 10 kbar were poor in SiO2 (44–50 wt %) and were formed because carbonate phases were involved in the melting reactions. With a temperature increase, the melts acquired a granite composition that was close to the composition of melts formed during the melting of the carbonate-free plagioclase + biotite + quartz assemblage. An aqueous–carbonic fluid containing Ca–Mg–Fe carbonate components coexisted with the melts. The phase assemblages and compositions of the granite melts obtained in the experiments are consistent with the modeling results. Comparison of the experimental results with published data on the partial melting of the carbonate-free plagioclase + biotite + quartz assemblages led us to the preliminary conclusion that Ca–Mg–Fe carbonates are able to decrease the melting temperature. The experiments have demonstrated that granite magmas can be derived together with aqueous–carbonic fluids from a carbonate-bearing protolith during high-grade metamorphism in the middle and lower crust. The occurrence of clinopyroxene or two-pyroxene assemblages in granitoids can be considered as a mineralogical indicator of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Acosta-Vigil, A., London, D., and Morgan, G.B., Experiments on the kinetics of partial melting of a leucogranite at 200 MPa H2O and 690–800°C: compositional variability of melts during the onset of H2O-saturated crustal anatexis, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 539–551.

    Article  Google Scholar 

  2. Anovitz, L.M. and Essene, E.J., Phase equilibria in the system CaCO3–MgCO3–FeCO3, J. Petrol., 1987, vol. 28, pp. 389–415.

    Article  Google Scholar 

  3. Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  4. Aranovich, L.Y. and Safonov, O.G., Halogens in high-grade metamorphism, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Cham: Springer, 2018.

    Google Scholar 

  5. Bartoli, O. and Cesare, B., Nanorocks: a 10-year-old story, Rendiconti Lincei. Scienze Fisiche e Naturali, 2020, vol. 31, pp. 249–257.

    Article  Google Scholar 

  6. Boettcher, A.L., Robertson, J.K., and Wyllie, P.J., Studies in synthetic carbonatite systems: solidus relationships for CaO–MgO–CO2–H2O to 40 kbar and CaO–MgO–SiO2–CO2–H2O to 10 kbar, J. Geophys. Res. Solid Earth, 1980, vol. 85, pp. 6937–6943.

    Article  Google Scholar 

  7. Bohlen, S.R. and Liotta, J.J., A barometer for garnet amphibolites and garnet granulites, J. Petrol., 1986, vol. 27, pp. 1025–1034.

    Article  Google Scholar 

  8. Bohlen, S.R., Wall, V.J., and Boettcher, A.L., Geobarometry in granulites, Kinetics and Equilibrium in Mineral Reactions, New York: Springer, 1983, pp. 141–171.

    Google Scholar 

  9. Bohlender, F., van Reenen, D.D., and Barton, Jr.J.M., Evidence for metamorphic and igneous charnockites in the southern marginal zone of the Limpopo Belt, Precambrian Res., 1992, vol. 55, pp. 429–449.

    Article  Google Scholar 

  10. Bolder-Schrijver, L.J.A., Kriegsmann, L.M., and Touret, J.L.R., Primary carbonate/CO2 inclusions in sapphirine-bearing granulites from Central Sri-Lanka, J. Metamorph. Geol., 2000, vol. 18, pp. 259–269.

    Article  Google Scholar 

  11. Le Breton, N. and Thompson, A.B., Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis, Contrib. Mineral. Petrol., 1988, vol. 99, pp. 226–237.

    Article  Google Scholar 

  12. Brown, M., Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences, J. Geol. Soc., 2007, vol. 164, pp. 709–730.

    Article  Google Scholar 

  13. Brown, M., Granite: from genesis to emplacement, GSA Bull, 2013, vol. 1079-1113.

    Google Scholar 

  14. Carvalho, B.B., Bartoli, O., Cesare, B., et al., Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive, Earth Planet. Sci. Lett., 2020, vol. 536, p. 116170.

    Article  Google Scholar 

  15. Cesare, B., Acosta-Vigil, A., Bartoli, O., et al., What can we learn from melt inclusions in migmatites and granulites?, Lithos, 2015, vol. 239, pp. 186–216.

    Article  Google Scholar 

  16. Chappell, B.W. and White, A.J.R., Two contrasting granite types: 25 years later, Austral. J. Earth Sci, 2001, vol. 48, pp. 489–499.

    Article  Google Scholar 

  17. Chappell, B.W., Bryant, C.J., and Wyborn, D., Peraluminous I-type granites, Lithos, 2012, vol. 153, pp. 142–153.

    Article  Google Scholar 

  18. Clemens, J.D., The granulite–granite connexion, Granulites and Crustal Differentiation, Vielzeuf, D. and Vidal, P., Eds., Dordrecht: Kluwer Academic Publishers, 1990.

    Google Scholar 

  19. Clemens, J.D., Partial melting and granulite genesis: a partisan overview, Precambrian Res., 1992, vol. 55, pp. 297–301.

    Article  Google Scholar 

  20. Clemens, J.D., Experimental evidence against CO2-promoted deep crustal melting, Nature, 1993, vol. 363, pp. 336–338.

    Article  Google Scholar 

  21. Clemens, J.D., Droop, G.T., and Stevens, G., High-grade metamorphism, dehydration and crustal melting: a reinvestigation based on new experiments in the silica-saturated portion of the system KAlO2–MgO–SiO2–H2O–CO2 at P ≤ 1.5 GPa, Contrib. Mineral. Petrol., 1997, vol. 129, pp. 308–325.

    Article  Google Scholar 

  22. Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 524–541.

    Article  Google Scholar 

  23. Duke, E.F. and Rumble, D., Textural and isotopic variations in graphite from plutonic rocks, south-central New Hampshire, Contrib. Mineral. Petrol., 1986, vol. 93, pp. 409–419.

    Article  Google Scholar 

  24. Duncan, M.S. and Dasgupta, R., Co2 solubility and speciation in rhyolitic sediment partial melts at 1.5–3.0 GPa - implications for carbon flux in subduction zones, Geochim. Cosmochim. Acta, 2014, vol. 124, pp. 328–347.

    Article  Google Scholar 

  25. Ebadi, A. and Johannes, W., Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2, Contrib. Mineral. Petrol., 1991, vol. 106, pp. 286–295.

    Article  Google Scholar 

  26. Elkins, L.T. and Grove, T.L., Ternary feldspar experiments and thermodynamic models, Am. Mineral., 1990, vol. 75, pp. 544–559.

    Google Scholar 

  27. Farquhar, J. and Chacko, T., Isotopic evidence for involvement of CO2-bearing magmas in granulite formation, Nature, 1991, vol. 354, pp. 60–63.

    Article  Google Scholar 

  28. Ferrero, S., Wunder, B., Ziemann, M.A., et al., Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust, Earth Planet. Sci. Lett., 2016, vol. 454, pp. 121–131.

    Article  Google Scholar 

  29. Le Fort, P., Cuney, M., Deniel, C., et al., Crustal generation of the Himalayan leucogranites, Tectonophysics, 1987, vol. 134, pp. 39–57.

    Article  Google Scholar 

  30. Frezzotti, M.-L., Di Vincenzo, G., Ghezzo, C., et al., Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range (northern Victoria Land, Antarctica), Contrib. Mineral. Petrol., 1994, vol. 117, pp. 111–123.

    Article  Google Scholar 

  31. Frost, B.R. and Frost, C.D., CO2, melts and granulite metamorphism, Nature, 1987, vol. 327, pp. 503–506.

    Article  Google Scholar 

  32. Frost, B.R., Frost, C.D., and Touret, J.L., Magmas as a source of heat and fluids in granulite metamorphism, Fluid Movements–-Element transport and the composition of the Deep Crust, Netherlands: Springer, 1989.

    Google Scholar 

  33. Frost, B.R., Frost, C.D., Hulsebosch, T.P., et al., Origin of the charnockites of the Louis Lake Batholith, Wind River Range, Wyoming, J. Petrol., 2000, vol. 41, pp. 1759–1776.

    Article  Google Scholar 

  34. Frost, B.R., Barnes, C.G., Collins, W.J., et al., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.

    Article  Google Scholar 

  35. Gao, P., Zheng, Y.F., and Zhao, Z.F., Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis, Lithos, 2016, vol. 266, pp. 133–157.

    Article  Google Scholar 

  36. Gardien, V., Thompson, A.B., Grujic, D., et al., Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting, J. Geophys. Res. Solid Earth, 1995, vol. 100, B8, pp. 15581–15591.

    Article  Google Scholar 

  37. Gardien, V., Thompson, A.B., and Ulmer, P., Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole, J. Petrol., 2000, vol. 41, pp. 651–666.

    Article  Google Scholar 

  38. Glassley, W.E., Deep crustal carbonates as CO2 fluid sources: evidence from metasomatic reaction zones, Contrib. Mineral. Petrol., 1983, vol. 84, pp. 15–24.

    Article  Google Scholar 

  39. Grant, J.A., 1986. quartz-phlogopite-liquid equilibria and origins of charnockites, Am. Mineral., 1986, vol. 71, pp. 1071–1075.

    Google Scholar 

  40. Grassi, D. and Schmidt, M.W., The melting of carbonated pelites from 70 to 700 km depth, J. Petrol., 2011, vol. 52, pp. 765–789.

    Article  Google Scholar 

  41. Groppo, C., Rapa, G., Frezzotti, M.L., et al., The fate of calcareous pelites in collisional orogens, J. Metamorph. Geol., 2021, vol. 39, pp. 181–207.

    Article  Google Scholar 

  42. Hamilton, D.L., Mackenzie W.S. phase equilibrium studies in the system NaAlSiO4 (nepheline)–KAlSiO4 (kalsilite)–SiO2–H2O, Mineral. Mag., 1965, vol. 34, pp. 214–231.

    Google Scholar 

  43. Hammouda, T. and Keshav, S., Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites, Chem. Geol., 2015, vol. 418, pp. 171–188.

    Article  Google Scholar 

  44. Harley, S.L. and Santosh, M., Wollastonite at nuliyam, kerala, southern india: a reassessment of CO2-infiltration and charnockite formation at a classic locality, Contrib. Mineral. Petrol., 1995, vol. 120, pp. 83–94.

    Article  Google Scholar 

  45. Henry, D.J., Guidotti, C.V., and Thomson, J.A., The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms, Am. Mineral., 2005, vol. 90, pp. 316–328.

    Article  Google Scholar 

  46. Herms, P. and Schenk, V., Fluid inclusions in granulite-facies metapelites of the Hercynian ancient lower crust of the Serre, Calabria, Southern Italy, Contrib. Mineral. Petrol., 1992, vol. 112, pp. 393–404.

    Article  Google Scholar 

  47. Herms, P. and Schenk, V., Fluid inclusions in high-pressure granulites of the Pan-African belt in Tanzania (Uluguru Mts): a record of prograde to retrograde fluid evolution, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 199–212.

    Article  Google Scholar 

  48. Holland, T.J., The reaction albite = jadeite + quartz determined experimentally in the range 600-1200oC, Am. Mineral., 1980, vol. 65, pp. 129–134.

    Google Scholar 

  49. Holland, T. and Powell, R., Thermodynamics of order–disorder in minerals; i. symmetric formalism applied to minerals of fixed composition, Am. Mineral., 1996, vol. 81, pp. 1413–1424.

    Article  Google Scholar 

  50. Holloway, J.R., Fluids in evolution of granitic magmas: consequence of finite CO2 solubility, GSA Bull., 1976, vol. 87, pp. 1513–1518.

    Article  Google Scholar 

  51. Huizenga, J.M. and Touret, J.L., Granulites, CO2 and graphite, Gondwana Res., 2012, vol. 22, pp. 799–809.

    Article  Google Scholar 

  52. Johnson, T.E., White, R.W., and Powell, R., Partial melting of metagreywacke: a calculated mineral equilibria study, J. Metamorph. Geol., 2008, vol. 26, pp. 837–853.

    Article  Google Scholar 

  53. Kerrick, D.M. and Caldeira, K., Metamorphic CO2 degassing from orogenic belts, Chem. Geol., 1998, vol. 145, pp. 213–232.

    Article  Google Scholar 

  54. Konnerup-Madsen, J., Composition and microthermometry of fluid inclusions in the Kleivan granite, south Norway, Am. J. Sci., 1977, vol. 277, pp. 673–696.

    Article  Google Scholar 

  55. Konnerup-Madsen, J., Fluid inclusions in quartz from deep-seated granitic intrusions, south Norway, Lithos, 1979, vol. 12, pp. 13–23.

    Article  Google Scholar 

  56. Lamadrid, H.M., Lamb, W.M., Santosh, M., et al., Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks, Gondwana Res., 2014, vol. 26, pp. 301–310.

    Article  Google Scholar 

  57. Lamb, W., Carbonates in feldspathic gneisses from the granulite facies: implications for the formation of CO2-rich fluid inclusions, Metamorphic and Crustal Evolution: Papers in Honour of Prof. R.S. Sharma, Ed. Thomas, H., New Delhi: Atlantic, 2005, pp. 163–181.

  58. Lowenstern, J.B., Carbon dioxide in magmas and implications for hydrothermal systems, Miner. Deposita, 2001, vol. 36, pp. 490–502.

    Article  Google Scholar 

  59. Mann, U. and Schmidt, M.W., Melting of pelitic sediments at subarc depths: 1. Flux vs. fluid-absent melting and a parameterization of melt productivity, Chem. Geol., 2015, vol. 404, pp. 150–167.

    Article  Google Scholar 

  60. McCourt, S. and van Reenen, D.D., Structural geology and tectonic setting of the Sutherland greenstone belt, Kaapvaal Craton, South Africa, Precambrian Res., 1992, vol. 55, pp. 93–110.

    Article  Google Scholar 

  61. Mityaev A.S., Safonov O.G., Reutsky, V.N., et al., Isotope Characteristics of carbonates from rocks of greenstone belts as an indicator of a possible source of fluids in Precambrian granulite complexes: an example from the Giyani Greenstone Belt and the Limpopo Granulite Complex, South Africa, Dokl. Earth Sci., 2020, vol. 492, pp. 342–345.

    Article  Google Scholar 

  62. Montel, J.M. and Vielzeuf, D., Partial melting of metagreywackes, Part II. Compositions of minerals and melts, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 176–196.

    Article  Google Scholar 

  63. Moyen, J. and Stevens, G., Experimental constraints on TTG petrogenesis: implications for Archean geodynamics, Geophys. Monogr. Ser., 2006, vol. 164, p. 149.

    Google Scholar 

  64. Moyen, J. and Martin, H., Forty years of TTG research, Lithos, 2012, vol. 148, pp. 312–336.

    Article  Google Scholar 

  65. Nair, R. and Chacko, T., Fluid-absent melting of high-grade semi-pelites: P-T constraints on orthopyroxene formation and implications for granulite genesis, J. Petrol., 2002, vol. 43, pp. 2121–2142.

    Article  Google Scholar 

  66. Newton, R.C., Smith, J.V., and Windley, B.F., Carbonic metamorphism, granulites and crustal growth, Nature, 1980, vol. 288, pp. 45–50.

    Article  Google Scholar 

  67. Ni, H. and Keppler, H., Carbon in silicate melts, Rev. Mineral. Geochem., 2013, vol. 75, pp. 251–287.

    Article  Google Scholar 

  68. Papale, P., Moretti, R., and Barbato, D., The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts, Chem. Geol., 2006, vol. 229, pp. 78–95.

    Article  Google Scholar 

  69. Patiño Douce, A.E., Effects of pressure and H2O content on the compositions of primary crustal melts, Trans. R. Soc. Edinb.: Earth Sci., 1996, vol. 87, pp. 11–21.

    Google Scholar 

  70. Patiño Douce, A.E. and Johnston, A.D., Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 202–218.

    Article  Google Scholar 

  71. Patiño Douce, A.E. and Beard, J.S., Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar, J. Petrol., 1995, vol. 36, pp. 707–738.

    Article  Google Scholar 

  72. Patiño Douce, A.E. and Beard, J.S., Effects of P, fO2 and Mg/Fe ratio on dehydration melting of model metagreywackes, J. Petrol., 1996, vol. 37, pp. 999–1024.

    Article  Google Scholar 

  73. Perchuk, L.L. and Gerya, T.V., Formation and evolution of Precambrian granulite terranes: a gravitational redistribution model, Origin and Evolution of Precambrian High-Grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa, van Reenen, D.D., Kramers, J.D., McCourt, S., Perchuk, L.L., Eds. Geol. Soc. Amer. Mem., 2011, vol. 207, pp. 1–22.

    Google Scholar 

  74. Perchuk, L.L., Gerya, T.V., van Reenen, D.D., et al., The Limpopo metamorphic belt, South Africa: 2. Decompression and cooling regimes of granulites and adjacent rocks of the Kaapvaal Craton, Petrology, 1996, vol. 4, no. 6, pp. 571–599.

    Google Scholar 

  75. Perchuk, L.L., Gerya, T.V., van Reenen, D.D., et al., P-t paths and tectonic evolution of shear zones separating high-grade terrains from cratons: examples from Kola Peninsula (Russia) and Limpopo region (South Africa), Mineral. Petrol., 2000, vol. 69, pp. 109–142.

    Article  Google Scholar 

  76. Peterson, J.W. and Newton, R.C., CO2-enhanced melting of biotite-bearing rocks at deep-crustal pressure–temperature conditions, Nature, 1989, vol. 340, pp. 378–380.

    Article  Google Scholar 

  77. Peterson, J.W. and Newton, R.C., Experimental biotite–quartz melting in the KMASH-CO2 system and the role of CO2 in the petrogenesis of granites and related rocks, Am. Mineral., 1990, vol. 75, pp. 1029–1042.

    Google Scholar 

  78. Pettijohn, F.J., Sedimentary Rocks, New York: Harper & Row, 1975, vol. 3.

    Google Scholar 

  79. Rajesh, H.M., Belyanin, G.A., Safonov, O.G., et al., Pyroxene-bearing low-and high- HREE TTGs from the northeastern margin of the Kaapvaal Craton, southern Africa: Implications for Archean geodynamics, Lithos, 2019, vol. 348, p. 105181.

    Article  Google Scholar 

  80. Rapp, R.P. and Watson, E.B., Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling, J. Petrol., 1995, vol. 36, pp. 891–931.

    Article  Google Scholar 

  81. Safonov, O.G., Tatarinova, D.S., van Reenen, D.D., et al., Fluid-assisted interaction of peraluminous metapelites with trondhjemitic magma within the Petronella shear-zone, Limpopo Complex, South Africa, Precambrian Res., 2014, vol. 253, pp. 114–145.

    Article  Google Scholar 

  82. Safonov, O.G., Yapaskurt, V.O., Elburg, M., et al., P-T conditions, mechanism and timing of the localized melting of metapelites from the Petronella shear-zone and relationships with granite intrusions in the Southern Marginal Zone of the Limpopo Belt, South Africa, J. Petrol., 2018a, vol. 59, pp. 695–734.

    Article  Google Scholar 

  83. Safonov, O.G., Reutsky, V.N., Varlamov, D.A., et al., Composition and source of fluids in high-temperature graphite-bearing granitoids associated with granulites: examples from the Southern Marginal Zone, Limpopo Complex, South Africa, Gondwana Res., 2018b, vol. 60, pp. 129–152.

    Article  Google Scholar 

  84. Safonov, O.G., van Reenen, D.D., Yapaskurt, V.O., et al., Thermal and Fluid Effects of Granitoid Intrusions on Granulite Complexes: Examples from the Southern Marginal Zone of the Limpopo Complex, South Africa, Petrology, 2018, vol. 26, no. 6, pp. 617–639.

    Article  Google Scholar 

  85. Safonov, O.G., Mityaev, A.S., Yapaskurt, V.O., et al., Carbonate-silicate inclusions in garnet as evidence for a carbonate-bearing source for fluids in leucocratic granitoids associated with granulites of the Southern Marginal Zone, Limpopo Complex, South Africa, Gondwana Res., 2020, vol. 77, pp. 147–167.

    Article  Google Scholar 

  86. Santosh, M. and Omori, S., Co2 flushing: a plate tectonic perspective, Gondwana Res., 2008, vol. 13, pp. 86–102.

    Article  Google Scholar 

  87. Santosh, M., Jayananda, M., and Mahabaleswar, B., Fluid evolution in the Closepet Granite - a magmatic source for CO2 in charnockite formation at Kabbaldurga, J. Geol. Soc. India, 1991, vol. 38, pp. 55–65.

    Google Scholar 

  88. Santosh, M., Tanaka, K., and Yoshimura, Y., Carbonic fluid inclusions in ultrahigh-temperature granitoids from southern India, C.R. Geosci., 2005, vol. 337, pp. 327–335.

    Article  Google Scholar 

  89. Satish-Kumar, M. and Santosh, M., A petrological and fluid inclusion study of calc-silicate-charnockite associations from southern Kerala, India: Implications for CO2 influx, Geol. Mag., 1998, vol. 135, pp. 27–45.

    Article  Google Scholar 

  90. Sawyer, E.W., The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt, Superior Province, Canada, Chem. Geol., 1986, vol. 55, pp. 77–95.

    Article  Google Scholar 

  91. Sawyer, E.W., Cesare, B., and Brown, M., When the continental crust melts, Elements, 2011, vol. 7, pp. 229–234.

    Article  Google Scholar 

  92. Shaposhnikov, V.V., and Aranovich, L.Ya., Experimental study of model granite melting in the presence of alkali carbonate solutions at 400 MPa, Geochem. Int., 2015, vol. 53, no. 9, pp. 838–844.

    Article  Google Scholar 

  93. Skjerlie, K.P. and Johnston, A.D., Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites, J. Petrol., 1993, vol. 34, pp. 785–815.

    Article  Google Scholar 

  94. Skora, S., Blundy, J.D., Brooker, R.A., et al., Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions, J. Petrol., 2015, vol. 56, pp. 953–980.

    Article  Google Scholar 

  95. Srikantappa, C., Raith, M., and Touret, J.L.R., Synmetamorphic high-density carbonic fluids in the lower crust: evidence from the Nilgiri granulites, southern India, J. Petrol., 1992, vol. 33, pp. 733–760.

    Article  Google Scholar 

  96. Stevens, G. and Clemens, J.D., Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary?, Chem. Geol., 1993, vol. 108, pp. 1–17.

    Article  Google Scholar 

  97. Stevens, G., Clemens, J.D., and Droop, G.T., Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 352–370.

    Article  Google Scholar 

  98. Tacchetto, T., Bartoli, O., Cesare, B., et al., Multiphase inclusions in peritectic garnet from granulites of the Athabasca granulite terrane (Canada): evidence of carbon recycling during Neoarchean crustal melting, Chem. Geol., 2019, vol. 508, pp. 197–209.

    Article  Google Scholar 

  99. Thompson, A.B., Dehydration melting of pelitic rocks and the generation of H2O undersaturated granitic liquids, Am. J. Sci., 1982, vol. 282, pp. 1567–1595.

    Article  Google Scholar 

  100. Thomsen, T.B. and Schmidt, M.W., Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle, Earth Planet. Sci. Lett., 2008, vol. 267, pp. 17–31.

    Article  Google Scholar 

  101. Tiraboschi, C., Tumiati, S., Sverjensky, D., et al., Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite, Contrib. Mineral. Petrol., 2018, vol. 173, pp. 1–17.

    Article  Google Scholar 

  102. Touret, J.L.R. and Huizenga, J.-M., Fluids in granulites, Geol. Soc. Am. Mem., 2011, vol. 207, pp. 25–37.

    Google Scholar 

  103. Tsuno, K. and Dasgupta, R., Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon, Contrib. Mineral. Petrol., 2011, vol. 161, pp. 743–763.

    Article  Google Scholar 

  104. Tsuno, K. and Dasgupta, R., The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction, Earth Planet. Sci. Lett., 2012, vol. 319, pp. 185–196.

    Article  Google Scholar 

  105. Tsunogae, T., Santosh, M., Osanai, Y., et al., Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh Island in the Archean Napier Complex, East Antarctica: Implications for CO2 infiltration during ultrahigh-temperature (T > 1100°C) metamorphism, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 279–299.

    Article  Google Scholar 

  106. van Reenen, D.D., Smit, C.A., Perchuk, L.L., et al., Thrust exhumation of the Neoarchean ultrahigh-temperature Southern Marginal Zone, Limpopo Complex: convergence of decompression-cooling paths in the hanging wall and prograde P-T paths in the footwall, Geol. Soc. Amer. Mem., 2011, vol. 207, pp. 189–212.

    Google Scholar 

  107. van Reenen, D.D., Smit, C.A., Perchuk, A.L., et al., The Neoarchaean Limpopo orogeny: exhumation and regional-scale gravitational crustal overturn driven by a granulite diaper, The Archaean Geology of the Kaapvaal Craton, Southern Africa, Cham: Springer, 2019, pp. 185–224.

    Google Scholar 

  108. Vielzeuf, D. and Holloway, J.R., Experimental determination of the fluid-absent melting relations in the pelitic system, Contrib. Mineral. Petrol., 1988, vol. 98, pp. 257–276.

    Article  Google Scholar 

  109. Vielzeuf, D. and Montel, J.M., Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships, Contrib. Mineral. Petrol., 1994, vol. 117, pp. 375–393.

    Article  Google Scholar 

  110. Weinberg, R.F. and Hasalova, P., Water-fluxed melting of the continental crust: a review, Lithos, 2015, vol. 212, pp. 158–188.

    Article  Google Scholar 

  111. Wendlandt, R.F., Influence of CO2 on melting of model granulite facies assemblages—a model for the genesis of charnockites, Am. Mineral., 1981, vol. 66, pp. 1164–1174.

    Google Scholar 

  112. White, R.W., Powell, R., Holland, T.J.B., et al., The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 2000, vol. 18, pp. 497–511.

    Article  Google Scholar 

  113. White, R.W., Powell, R., Holland, T.J.B., et al., New mineral activity-composition relations for thermodynamic calculations in metapelitic systems, J. Metamorph. Geol., 2014, vol. 32, pp. 261–286.

    Article  Google Scholar 

  114. White, R.W., Palin, R.M., and Green, E.C., High-grade metamorphism and partial melting in Archean composite grey gneiss complexes, J. Metamorph. Geol., 2017, vol. 35, pp. 181–195.

    Article  Google Scholar 

  115. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  116. Zen E-an. Aluminum enrichment in silicate melts by fractional cryitallization: some mineralogic and petrographic constraints, J. Petrol., 1986, vol. 27, pp. 1095–1117.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.L Perchuk (Geological Faculty, Moscow State University) for constructive criticism of the initial version of the manuscripts and suggestions for its improvement.

Funding

This study was supported by Russian Foundation for Basic Research, project no. 20-35-90013 for postgraduate students and by the Russian Science Foundation, project 18-17-00206-P (part of this research concerning relations between granite magmatism and the evolution of Precambrian granulite complexes) and was partly carried under the government-financed research projects FMUF-2022-0004; 1021051302305-5-1.5.2;1.5.4 for Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mityaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mityaev, A.S., Safonov, O.G., Varlamov, D.A. et al. Partial Melting of Carbonate–Biotite Gneiss at the Conditions of the Continental Crust: Experimental and Thermodynamic Modeling. Petrology 30, 278–304 (2022). https://doi.org/10.1134/S0869591122030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122030067

Keywords:

Navigation