Skip to main content
Log in

Comparison of the Compositions and Microstructures of Terrestrial and Lunar Impact Glasses: Samples from the Zhamanshin Crater and Luna 16, 20, and 24 Missions

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents pioneering data on the comparative study of impact glasses from the Zhamanshin crater and lunar regolith (delivered by the Luna 16, 20, and 24 probes). The data were acquired using analytical techniques of ultrahigh spatial resolution. Many of the melt and condensate impact glasses, both terrestrial and lunar, are similar in inner structure and composition, which were controlled primarily by the physics of the impacts and similar compositions of the targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Adcock, C.T., Spilde, M.N., and Papike, J.J., Automated HASP glass search using the electron microprobe, 38thLunar Planet. Sci., 1997, vol. 28, pp. 1151–1152.

    Google Scholar 

  2. Arndt, J.V. and Engelhardt, W., Formation of Apollo-17 orange and black glass beads, Proc. XVII Lunar Planet. Sci. Conf. Part 2.J. Geophys. Res.: Solid Earth, 1987, vol. 92, no. B4, pp. 372–376.

    Google Scholar 

  3. Bibring, J.P., Duraud, J.P., Durrieu, L., et al., Ultrathin amorphous coatings on lunar dust grains, Science, 1972, vol. 175, pp. 753–755.

    Google Scholar 

  4. Christoffersen, R., McKay, D.S., and Keller, L.P., Grain rims on ilmenite in the lunar regolith: comparison to vapor deposits on regolith silicates, 35th Lunar Planet. Sci. Conf. Proc., 1994, vol. 25, pp. 259–260.

  5. Cliff, G. and Lorimer, G.W., Quantitative analysis of thin metal foils using emma-4, the ratio technique, Proc. 5th European Congress on Electron Microscopy, Institute of Physics, London, 1972, pp. 140–141.

  6. Delano, J.W., Lindsley, D.H., and Rudowski, R., Glasses of impact origin from Apollo-11, -12, -15, and -16: evidence for fractional vaporization and mare/highland mixing, Proc. 12th Lunar Planet. Sci. Conf., 1981, pp. 339–370.

  7. Dikov, Yu.P., Gerasimov, M.V., Yakovlev, O.I., and Wlotzka, F., The correlation of alkalis and aluminum during high-temperature volatilization of albite and nepheline, 34th Lunar Planet. Sci. Conf. Proc. Abstracts, 1993, pp. 403–404.

  8. Dikov, Yu.P., Ivanov, A.V., Wlotzka, F., et al., High enrichment of carbon and volatile elements in the surface layers of Luna 16 soil sample 1635: result of comet or meteorite impact?, Earth Planet. Sci. Lett., 1998, vol. 155, no. 3, pp. 197–204.

    Google Scholar 

  9. Dikov, Y.P., Huth, J., Wlotzka, F., and Ivanov, A.V., HASP glasses in Apollo-17 orange soil sample 74220, 31st Lunar Planet. Sci. Conf., 2000, vol. 31, pp. 1110–1111.

  10. Dikov, Yu.P., Ivanov, A.V., Wlotzka, F., Galimov, E.M., and Wanke, G., The nature of volatiles in the lunar regolith, Solar Syst. Res., 2002, vol. 36, no. 1, pp. 1–11.

    Google Scholar 

  11. Dikov, Yu.P., Gerasimov, M.V., Yakovlev, O.I., and Ivanov, A.V., Valence state of iron in a condensate from the Luna 16 regolith, Petrology, 2009, vol. 17, no. 5, pp.429–438.

    Google Scholar 

  12. Dowty, E., Keil, K., and Prinz, M., Major-element vapor fractionation on the lunar surface: an unusual lithic fragment from the Luna 20 fines, Lunar Planet. Sci. Conf., 1973, vol. 21, no. 1, pp. 91–96.

    Google Scholar 

  13. Dran, J.C., Durrieu, L., Jouret, C., and Maurette, M., Habit and texture studies of lunar and meteoritic materials with a 1 MeV electron microscope, Earth Planet. Sci. Lett., 1970, vol. 9, no. 5, pp. 391–400.

    Google Scholar 

  14. Engelhardt, W.V. and Stengelina, R., Normative composition and classification of lunar igneous rocks and glasses, II. Lunar glasses, Earth Planet. Sci. Lett., 1981, vol. 52, no. 1, pp. 55–66.

    Google Scholar 

  15. Engelhardt, W.V., Luft, E., Arndt, J., et al., Origin of moldavites, Geochim. Cosmochim. Acta, 1987, vol. 51, no. 6, pp. 1425–1443.

    Google Scholar 

  16. Florensky, P.V. and Dikov Yu.P., Genesis of tektites: reason of their composition and structure, Geokhimiya, 1981, vol. 6, pp. 809–819.

    Google Scholar 

  17. Florensky, K.P. and Nikolaeva, O.V., Volatile components and continental matter of planets, Geokhimiya, 1984, no. 9, pp. 1251–1267.

  18. Fredriksson, K., Nelen, J., and Melson, W.G., Petrography and origin of lunar breccias and glasses, Geochim. Cosmochim. Acta.Suppl., 1970, vol. 1, p. 419.

    Google Scholar 

  19. Gornostaeva, T.A., Mokhov, A.V., and Gornostaev, A.N., Ultrasound extractor for sample preparation in transmission electron microscope, VII Vseross. konf. po rentgenospektral’nomu analizu (7th All-Russian Conference on X-Ray Analysis), Novosibirsk: 2011, p. 53.

  20. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., Bogatikov, O.A., The protective role of glass film over the surface of metallic particles of the lunar regolith, Dokl. Earth Sci., 2014, vol. 459, pp. 1457–1459.

    Google Scholar 

  21. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate glasses from the Zhamanshin Crater. I. Irghizites, Petrology, 2016, vol. 24, no. 1, pp. 1–20.

    Google Scholar 

  22. Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., and Bogatikov, O.A., Condensate glasses from the Zhamanshin Crater. II. Zhamanshinites, Petrology, 2017, vol. 25, no. 1, pp. 1–22.

    Google Scholar 

  23. Gornostaeva T.A., Mokhov A.V., Kartashov P.M., Bogatikov O.A. Impactor type and model of the origin of the Zhamanshin Astrobleme, Kazakhstan, Petrology, 2018, vol. 26, no. 1, pp. 82–95.

    Google Scholar 

  24. Herzog, G.F., Delaney, J.S., Lindsay, F., et al., Magnesium and silicon isotopes in hasp glasses from apollo-16 lunar soil 61241, 43rd Lunar Planet. Sci. Conf., 2012, pp. 1579–1580.

  25. Horz, F., Fechtig, H., Janicke, J., and Schneider, E., Morphology and chemistry of projectile residue in small experimental impact craters, 14th Lunar Planet. Sci. Conf. Proc., 1983, vol. 14, pp. B353–B363.

    Google Scholar 

  26. Ivanov, A.V., Role of vaporization in the formation of chemical composition of lunar glasses, Geokhimiya, 1975, no. 8, pp. 1150–1153.

  27. Ivanov, A.V., Volatiles in Lunar Regolith Samples: A Survey, Solar System Res., 2014, vol. 48, no. 2, pp. 113–129.

    Google Scholar 

  28. Ivanov, A.V. and Florensky, K.P., The role of vaporization processes in lunar rock formation, 6th Lunar Planet. Sci. Conf. Proc., 1975, vol. 6, pp. 1341–1350.

  29. Izokh, E.P., Petrochemistry of rocks of targets, impactites, and tektites of the Zhamanshin astrobleme, Kosmicheskoe veshchestvo i Zemlya (Cosmic Matter and Earth), Novosibirsk: Nauka, Sib. Otd-nie, 1986, pp. 159–203.

    Google Scholar 

  30. Izokh, E.P. and Le Dyk, An., Tectites of Vietnam. Hypothesis of Cometary Transportation, Meteoritika, 1983, vol. 42, pp. 158–169.

    Google Scholar 

  31. Kartashov, P.M., Mokhov, A.V., Gornostaeva, T.A., et al., Mineral phases on the fracture of a glass particle and in the fines of a Luna 24 regolith sample, Petrology, 2010, vol. 18, no. 2, pp. 107–125.

    Google Scholar 

  32. Keller, L.P. and McKay, D.S., The origin of amorphous rims on lunar plagioclase grains: solar wind damage or vapor condensates, 54th Annual Meet. Meteorit. Soc., 1991, vol. 766, p. 114.

  33. Keller, L.P. and McKay, D.S., Impact glasses and vapor condensates in Apollo-11 soil, Lunar Planet. Sci. Conf. Abstracts, 1992a, vol. 23, pp. 673–674.

    Google Scholar 

  34. Keller, L.P. and McKay, D.S., Micrometer-sized glass spheres in Apollo-16 soil 61181: implications for impact volatilization and condensation, Lunar Planet. Sci. Conf., 1992b, vol. 22, pp. 137–141.

  35. Keller, L.P. and McKay, D.S., The nature and origin of rims on lunar soil grains, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 11, pp. 2331–2341.

    Google Scholar 

  36. Koeberl, C., Blue glass: a new impactite variety from Zhamanshin Crater, U.S.S.R, Geochim. Cosmochim. Acta, 1988, vol. 52, no. 3, pp. 779–784.

    Google Scholar 

  37. Lushnipov, A.A., Negin, A.E., Pakhomov, A.V., and Smirnov B.M., Aerogel structures in gases, Usp. Fiz. Nauk, 1991, vol. 161, no. 2, pp. 113–123.

    Google Scholar 

  38. Ma, M.-S., Schmitt, R.A., Warner, R.D., et al., Genesis of Apollo-15 olivine normative mare basalts: trace elements correlations, 9th Lunar Planet. Sci. Conf. Proc., 1978, vol. 9, pp. 523–533.

  39. Magna, T., Deutsch, A., Mezger, K., et al., Lithium in tektites and impact glasses: implications for sources, histories and large impacts, Geochim. Cosmochim. Acta, 2011, vol. 75, no. 8, pp. 2137–2158.

    Google Scholar 

  40. Margolis, S.V., Claeys, P., and Kyte, F.T., Microtektites, microkrystites, and spinels from a Late Pliocene asteroid impact in the Southern Ocean, Science, 1991, vol. 251, no. 5001, pp. 1594–1597.

    Google Scholar 

  41. Markova, O.M., Yakovlev, O.I., Semenov, G.A., and Belov, A.N., Some general results of experiments on evaporation of natural melts in the Knudsen cell, Geokhimiya, 1986, no. 11, pp. 1559–1569.

  42. Mokhov, A.V., Analytical electron microscopy in study of ultra-dispersed fraction of lunar soil, I Vseross. molodezh. konf. “Mineraly, stroenie, svoistva, metody issledovaniya” (1st All-Russian Youth Conference on Minerals, Structure, Properties, and Methods of Study), Il’meny: 2009, pp. 42–45.

  43. Mokhov, A.V., Kartashov, P.M., Gornostaeva, T.A., Bogatikov, O.A., Native ytterbium of regolith AS Luna-24, Dokl. Earth Sci., 2011, vol. 441, pp. 1692–1694.

    Google Scholar 

  44. Naney, M.T., Crowl, D.M., and Papike, J.J., The Apollo-16 drill core: statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass, Lunar Planet. Sci. Conf. Proc., 1976, vol. 7, pp. 155–184.

  45. Naughton, J.J., Hammond, D.A., Margolis, S.V., and Muenow, D.W., The nature and effect of the volatile cloud produced by volcanic and impact events on the Moon as derived from a terrestrial volcanic model, 3rd Lunar Planet. Sci. Conf. Proc., 1972, vol. 3, pp. 2015–2024.

  46. Noble, S.K., Pieters, C.M., Taylor, L.A., et al., The optical properties of the finest fraction of lunar soil: implications for space weathering, Meteorit. Planet. Sci., 2001, vol. 36, no. 1, pp. 31–42.

    Google Scholar 

  47. Norris, J.A., Keller, L.P., and McKay, D.S., Impact glasses from the ultrafine fraction of lunar soils, 24th Lunar Planet. Sci. Conf. Proc., 1993, vol. 24, pp. 1093–1094.

  48. O’Keefe, J.A., Tektite glass in Apollo-12 sample, Science, 1970, vol. 168, pp. 1209–1210.

    Google Scholar 

  49. O’Keefe, J.A., Tectites and their Origin, New York: Elsevier, 1976.

  50. Otmakhov, V.I., Varlamova, N.V., Manankov, A.N., and Lapova, T.V., Physicochemical studies of tektites for cosmic monitoring, Izv. Tomskogo Politekhn. Univ., 2006, vol. 309, no. 5, pp. 40–44.

    Google Scholar 

  51. Papike, J.J., Spilde, M.N., Adcock, C.T., et al., Trace element fractionation by impact-induced volatilization-sims study of lunar HASP glasses, Lunar Planet. Sci. Conf. Proc., 1997, vol. 28, p. 1059.

  52. Petaev, M.I. and Wood, J.A., The condensation with partial isolation (CWPI) model of condensation in the solar nebula, Meteorit. Planet. Sci., 1998, vol. 33, no. 5, pp. 1123–1137.

    Google Scholar 

  53. Petaev, M.I., Jacobsen, S.B., and Huang, S., Testing models of moon origin: condensation of impact-vaporised bulk silicate earth material, 45th Lunar Planet. Sci. Conf. Proc., 2014, pp. 2316–2317.

  54. Pratesi, G., Viti, C., Cipriani, C., and Mellini, M., Silicate-silicate liquid immiscibility and graphite ribbons in Libyan desert glass, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 5, pp. 903–911.

    Google Scholar 

  55. Reid, A.M., Warner, J., Ridley, W.I., and Brown, R.W., Major element composition of glasses in three Apollo-15 soils, Meteoritics, 1972, vol. 7, no. 3, pp. 395–415.

    Google Scholar 

  56. Rietmeijer, F.J.M. and Karner, J.M., Metastable eutectics in the Al2O3–SiO2 system explored by vapor phase condensation, J. Chem. Phys., 1999, vol. 110, pp. 4554–4558.

    Google Scholar 

  57. Rietmeijer, F.J.M., Nuth, J.A., Rochette, P., et al., Deep metastable eutectic condensation in Al–Fe–SiO–H2–O2 vapors: implications for natural Fe-aluminosilicates, Am. Mineral., 2006, vol. 91, pp. 1688–1698.

    Google Scholar 

  58. Roedder, E. and Weiblen, P.W., Apollo-17 “orange soil” and meteorite impact on liquid lava, Nature, 1973, vol. 244, pp. 210–212.

    Google Scholar 

  59. Skublov, G.T. and Tyugai, O.M., Petrochemical model of the formation of tektite-like glasses of the Zhamanshin Crater and their relation with lunar impact genesis, Zap. Ross. Mineral. O-va, 2004, no. 6, pp. 95-117.

  60. Vaniman, D.T., Glass variants and multiple hasp trends in apollo 14 regolith breccias, Lunar Planet. Sci. Conf. Proc., 1990, vol. 20, pp. 209–217.

  61. Walker, R. and Yuhas, D., Cosmic ray track production rates in lunar materials, Geochim. Cosmochim. Acta.Suppl., 1973, vol. 3, pp. 2379–2389.

    Google Scholar 

  62. Warren, P.H. and Kallemeyn, G.W., Que93069: a lunar meteorite rich in HASP glasses, 26th Lunar Planet. Sci. Conf. Proc., 1995, vol. 26, pp. 1465–1466.

  63. Warren, P.H., Lunar rock-rain: diverse silicate impact-vapor condensates in an Apollo-14 regolith breccias, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 3562–3585.

    Google Scholar 

  64. Wentworth, S.J. and McKay, D.S., Glasses in ancient and young Apollo-16 regolith breccias: populations and ultra mg glasses, 18th Lunar Planet. Sci. Conf. Proc., 1988, vol. 18, pp. 67–77.

  65. Wentworth, S.J., Keller, L.P., McKay, D.S., and Morris, R.V., Space weathering on the Moon: patina on Apollo 17 samples 75075 and 76015, Meteorit. Planet. Sci., 1999, vol. 34, no. 4, pp. 593–603.

    Google Scholar 

  66. Wood, J.A. and Hashimoto, A., Mineral equilibrium in fractionated nebular systems, Geochim. Cosmochim. Acta, 1993, vol. 57, no. 10, pp. 2377–2388.

    Google Scholar 

  67. Yakovlev, O.I., Dikov, Yu.P., and Gerasimov, M.V., Differentiation caused by impact-induced vaporization during the Earth’s accretion, Geochem. Int., 2000, vol. 38, no. 10, pp. 937–954.

    Google Scholar 

  68. Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., et al., Experimental Investigation of Factors Controlling the Composition of Glasses from the Lunar Regolith, Geochem. Int., 2003, vol. 4, no. 5, pp. 417–430.

    Google Scholar 

  69. Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Experimental melting of obsidian by laser pulses with implications for the analysis of the composition of impact glasses, Geochem. Int., 2005, vol. 43, no. 3, pp. 211–221.

    Google Scholar 

  70. Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Temperatures of formation of HASP and GASP particles, 40th Lunar Planet. Sci. Conf. Proc., 2009, vol. 40, p. 1261.

  71. Yakovlev, O.I., Gerasimov, M.V., Dikov, Yu.P., Compositions of lunar condensates and conditions of their formation on the surface, XVI Ross. soveshch. po eksperimental’noi mineralogii (16th All-Russian Conference on Experimental Mineralogy), 2010, pp. 291–293.

  72. Yakovlev, O.I., Gerasimov, M.V., and Dikov, Yu.P., Conditions of condensate rim formation on the surface of lunar regolith particles, Geochem. Int., 2011, vol. 49, no. 10, pp. 953–966.

    Google Scholar 

  73. Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., and Vlottska, F., Vaporization of aluminum from silicate melt, Geochem. Int., 1997, vol. 35, no. 12, pp. 1046–1059.

    Google Scholar 

  74. Yakovlev, O.I., Kosolapov, A.I., Kuznetsov, A.V., and Nusinov, M.D., Results of study of fractional evaporation of basalic melt in vacuum, Dokl. Akad. Nauk SSSR, 1972, vol. 206, no. 4, pp. 970–973.

    Google Scholar 

  75. Zel’dovich, B. and Raizer, Yu., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Impact Waves and High-Temperature Hydrodynamic Phenomena), Moscow: FIZMATLIT, 2008.

  76. Zolensky, M.E. and Koeberl, C., Why are blue zhamanshinites blue? Liquid immiscibility in an impact melt, Geochim. Cosmochim. Acta, 1991, vol. 55, no. 5, pp. 1483–1486.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. P.V. Florensky (Gubkin State Oil and Gas University) and Dr. M.K. Sukhanov (Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) for providing samples for this study. This study was conducted under government-financed project “Study of the Composition and Structure of Mineral Materials with Techniques of High Spatial Resolution”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mokhov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M. et al. Comparison of the Compositions and Microstructures of Terrestrial and Lunar Impact Glasses: Samples from the Zhamanshin Crater and Luna 16, 20, and 24 Missions. Petrology 27, 95–107 (2019). https://doi.org/10.1134/S0869591119010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119010028

Keywords:

Navigation