Skip to main content
Log in

Ultramafic–Mafic Assemblage of Plutonic Rocks and Hornblende Schists of Shirshov Rise, Bering Sea, and Stalemate Ridge, Northwest Pacific: Geodynamic Interpretations of Geochemical Data

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents data on plutonic and metamorphic rocks dredged during Cruise 249 of the German R/V Sonne to the Stalemate Ridge, Northwest Pacific Ocean and the Shirshov Rise, western Bering Sea. Dredges in the northwestern sector of the Stalemate Ridge and central portion of the Shirshov Rise show that the plutonic and metamorphic rocks obtained here are amazingly similar. Our petrologic and geochemical data led us to view the rocks as members of a mafic–ultramafic assemblage typical of cumulate portions of ophiolite complexes and backarc spreading centers. The plutonic complexes of the Shirshov Rise and Stalemate Ridge show similarities not only in the petrography and mineralogy of their protoliths but also in the character of their metamorphic transformations. Plutonic rocks from both areas display mineralogical evidence of metamorphism within a broad temperature range: from the high-temperature amphibolite facies to the greenschist facies. Relations between the index mineral assemblages indicate that the metamorphic history of plutonic complexes in the Stalemate Ridge and Shirshov Rise proceeded along a retrograde path. Hornblende schists accompanying the plutonic rocks of the Stalemate Ridge and Shirshov Rise are petrographically close to foliated amphibolites in subophiolitic metamorphic aureoles. Within the framework of geodynamic interpretations of our results, it is realistic to suggest that the examined plutonic complexes were exhumed from subduction zones of various age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C.R., The Petrology of a Portion of the Troodos Plutonic Complex, Cyprus, Ph.D. Thesis, Cambridge: University, 1975.

    Google Scholar 

  • Baranov, B.V., Seliverstov, N.I., Murav’ev, A.V., and Muzurov, E.L., The Komandorsky basin as a product of spreading behind a transform plate boundary, Tectonophysics, 1991, vol. 199, pp. 237–269.

    Article  Google Scholar 

  • Bazylev, B.A., Magakyan, R., Silantyev, S.A., et al., Petrology of hyperbasites of Mamonia complex, southwestern Cyprus, Petrologiya, 1993, vol. 1, no. 4, pp. 348–378.

    Google Scholar 

  • Becker, H., Horan, M.F., Walker, R.J., et al., Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 4528–4550.

    Article  Google Scholar 

  • Bonatti, E., Lawrence, J.R., Hamlyn, P.R., and Breger, D., Aragonite from deep-sea ultramafic rocks, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1207–1214.

    Article  Google Scholar 

  • Brenan, J.M. and McDonough, W.F., Fractionation of highly siderophile elements (HSEs) by sulfide-silicate partitioning: a new spin, Am. Geophys. Union, Fall Meet., San Francisco, 2005, abstract 2005. AGUFM.V41D1502B.

    Google Scholar 

  • Casey, J.F. and Dewey, J.F., Initiation of subduction zones along transform and accreting plate boundaries, triplejunction evolution, and forearc spreading centers- implications for ophiolitic geology and obduction, in Ophiolites and Oceanic Lithosphere, Gass, I.G., Lippard, S.J., Shelton, A.W., Geol. Soc. London, Sp. Publ., 1984, vol. 13.

    Google Scholar 

  • Chum, C.Y., Cumulate pyroxenite and pyroxenite dykes in the Troodos ophiolite, Cyprus, Thesis of the Requirements for the Degree of Master of Philosophy at the University of Hong Kong, 2014.

    Book  Google Scholar 

  • Clenet, H., Ceuleneer, G., Pinet, P., et al., Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: petrogenesis and relationship to mantle diapirism, Lithos, 2010, vol. 114, pp. 265–281.

    Article  Google Scholar 

  • Dantas, C., Ceuleneer, G., Gregoire, M., et al., Pyroxenites from the southwest Indian Ridge, 9o–16oE: cumulates from incremental melt fractions produced at the top of a cold melting regime, J. Petrol., 2007, vol. 48, no. 4, pp. 647–660.

    Article  Google Scholar 

  • Dewey, J.F. and Casey, J.F., The origin of obducted largeslab ophiolite complexes, in Arc-Continent Collision, Brown, D. and Ryan, P.D., Front. Earth Sci., Berlin-Heidelberg: Springer-Verlag, 2011, pp. 431–444.

    Google Scholar 

  • Dogan Paktunc, A., Metamorphism of the ultramafic rocks of the Thompson Mine, Thompson Nickel Belt, Northern Manitoba, Can. Mineral., 1984, vol. 22, pp. 77–91.

    Google Scholar 

  • Evans, B.W., Johannes, W., Oterdoom, Y., et al., Stability of chrysotile and antigorite in the serpentine multisystem, Schweiz. Mineral. Petrograf. Mitt., 1976, vol. 56, pp. 79–93.

    Google Scholar 

  • Fru-Green, G.L., Connolly, J.A.D., Plas, A., et al., Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity, The Subseafloor Biosphere at Mid-Ocean Ridges. Geophys. Monogr. Ser., Washington: AGU, 2004, vol. 144, pp. 119–136.

    Article  Google Scholar 

  • Fyfe, W.S., On the relative stabilities of talc, anthophyllite and enstatite, Am. J. Sci., 1962, vol. 260, pp. 460–466.

    Article  Google Scholar 

  • Garrido, C.J. Godard, M., et al., Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia), Chem. Geol., 2009, vol. 266, pp. 180–195.

    Google Scholar 

  • Garuti, G., Fershtater, G., Bea, F., et al., Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Ural preliminary results, Tectonophysics, 1997, vol. 276, pp. 181–194.

    Article  Google Scholar 

  • Greenwood, H.J., The synthesis and stability of anthophyllite, J. Petrol., 1963, vol. 4, no. 3, pp. 317–351.

    Article  Google Scholar 

  • Hammarstrom, J.M. and Zen, E., Aluminum in hornblende: an empirical igneous geobarometer, Am. Mineral., 1986, vol. 7l, pp. 1297–1313.

    Google Scholar 

  • Harvey, J., et al., Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic ocean ridge (ODP hole 1274a): influence of hydrothermal and magmatic processes, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 1521–1538.

    Google Scholar 

  • Hellebrand, E., Snow, J.E., and Muehe, R., Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotites spinel compositions, Chem. Geol., 2002, vol. 182, pp. 227–235.

    Article  Google Scholar 

  • Himmelberg, G.R. and Loney, R.A., Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska, U.S. Geol. Surv. Prof. Pap., 1995, no. 1564, pp. 1–47.

    Google Scholar 

  • Holland, T. and Blundy, J., Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 433–447.

    Article  Google Scholar 

  • Jagoutz, E., Palme, H., Baddenhausen, H., et al., The abundances of major, and trace elements in the earth’s mantle as derived from primitive ultramafic nodules, The Tenth Lunar and Planet Sciences Conference. Abstracts of Papers, 1997, pp. 610–612.

    Google Scholar 

  • Jenkins, D.M., Stability and composition relations of calcic amphiboles in ultramafic rocks, Contrib. Mineral. Petrol., 1983, vol. 83, nos. 3–4, pp. 375–384.

    Article  Google Scholar 

  • Johnson, K.T.M., Dick, H.J.B., and Shimizu, N., Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotes, J. Geophys. Res., 1990, vol. 95, pp. 2661–2678.

    Article  Google Scholar 

  • Komor, S.C., Elthon, D., and Casey, J.F., Mineralogic variation in a layered ultramafic cumulate sequence at the North Arm Mountain Massif, Bay of Islands ophiolite, Newfoundland, J. Geophys. Res., 1985, vol. 90, no. B9, pp. 7705–7736.

    Google Scholar 

  • Krasnova, E.A., Portnyagin, M.V., Silantyev, S.A., et al., Two-stage evolution of mantle peridotites from the Stalemate Fracture Zone, Northwestern Pacific, Geochem. Int., 2013, vol. 51, no. 9, pp. 683–695.

    Article  Google Scholar 

  • Krause, J., Brugmann, G.E., and Pushkarev, E.V., Chemical composition of spinel from uralian-alaskan-type maficultramafic complexes and its petrogenetic significance, Contrib. Mineral. Petrol., 2010, vol. 161, no. 2, pp. 255–273.

    Article  Google Scholar 

  • Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., Nomenclature of amphiboles. report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names, Eur. J. Mineral., 1997, vol. 9, pp. 623–651.

    Article  Google Scholar 

  • Liu, C.-Z., Snow, J.E., Brugmann, G., et al., Non-chondritic HSE budget in Earth’s upper mantle evidenced by abyssal peridotites from Gakkel Ridge (Arctic Ocean), Earth Planet. Sci. Lett., 2009, vol. 283, pp. 122–132.

    Article  Google Scholar 

  • Lonsdale, P., Paleogene history of the Kula Plate: offshore evidence and onshore implications, Geol. Soc. Am. Bull., 1988, vol. 100, pp. 733–754.

    Article  Google Scholar 

  • Malvoisin, B., Mass transfer in the oceanic lithosphere: serpentinization is not isochemical, Earth Planet. Sci. Lett., 2015, vol. 430, pp. 75–85.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Miyashiro, A., Shido, F., and Kanehira, K., Metasomatic chloritization of gabbros in the Mid-Atlantic Ridge near 30°N, Mar. Geol., 1979, vol. 31, nos. 1–2, pp. 47–52.

    Article  Google Scholar 

  • Muller, W.F., Schmadicke, E., Okrusch, M., and Schussler, U., Intergrowths between anthophyllite, gedrite, calcic amphibole, cummingtonite, talc and chlorite in a metamorphosed ultramafic rock of the KTB pilot hole, Bavaria, Eur. J. Mineral., 2003, vol. 15, pp. 295–307.

    Article  Google Scholar 

  • Myhill, R., Constraints on the evolution of the mesohellenic ophiolite from subophiolitic metamorphic rocks, in Melanges: Processes of Formation and Societal Significance, Wakahnyashi, J. and Dyleck, Y., Ed., Geol. Soc. Am., 2011, vol. 480, pp. 75–94.

    Google Scholar 

  • Ohara, Y., Stern, R.J., Ishii, T., et al., Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 1–18.

    Article  Google Scholar 

  • Pallister, J.S. and Hopson, C.A., Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber, J. Geophys. Res., 1981, vol. 86, no. B4, pp. 2593–2644.

    Google Scholar 

  • Pallister, J.S. and Knight, R.J., Rare-earth element geochemistry of the Samail ophiolite near Ibra, Oman, J. Geophys. Res., 1981, vol. 86, no. B4, pp. 2673–2697.

    Google Scholar 

  • Papunen, H., Geology and Ultramafic Rocks of the Paleoproterozoic Pulju Greenstone Belt, Western Lapland. Integrated Technologies for Mineral Exploration Pilot Project for Nickel Ore Deposits. Technical Report, Turku University, 1998.

    Google Scholar 

  • Plyusnina, L.P., Eksperimental’noe issledovanie metamorfizma bazitov (Experimental Study of Metamorphism of Basites), Moscow: Nauka, 1983.

    Google Scholar 

  • Righter, K., Campbell, A.J., Humayun, M., and Hervig, R.L., Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Crbearing spinel, olivine, pyroxene and silicate melt, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 867–880.

    Google Scholar 

  • Salters, V.J.M. and Stracke, A., Composition of the depleted mantle, Geochem. Geophys. Geosyst., 2004, vol. 5, Q05004, doi 10.1029/2003GC00059.

    Google Scholar 

  • Schmidt, M.W., Experimental calibration of the Al-inhornblende geobarometer at 650oC, 3.5–13.0 kbar, Terra Abstracts, 1991, vol. 3, no. 1, p. 30.

    Google Scholar 

  • Schmidt, G. and Snow, J.E., Platinum group elements (PGE) in abyssal peridotites from the oceanic upper mantle, Seventh Annual V.M. Goldschmidt Conference, 1997, 2021.pdf. http://www.lpi.usra.edu/meetings/gold/pdf/2021. pdf

    Google Scholar 

  • Scholl, D., Viewing the tectonic evolution of the Kamchatka–Aleutian (KAT) connection with an Alaska crustal extrusive perspective, in Volcanism and Subduction: the Kamchatka Region, Eichelberger, j., Gordeev, E., Kasahara, M., Eds., Washington: AGU, 2007, vol. 172, pp. 3–35.

    Google Scholar 

  • Scotford, D.M. and Williams, J.R., Petrology and geochemistry of metamorphosed ultramafic bodies in a portion of the Blue Ridge of North Carolina and Virginia, Am. Mineral., 1983, vol. 68, pp. 78–94.

    Google Scholar 

  • Seyler, M., Lorand, J.-P., Dick, H.J.B., and Drouin, M., Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°–20°N: ODP hole 1274a, Contrib. Mineral. Petrol., 2007, vol. 153, pp. 303–319.

    Article  Google Scholar 

  • Shiraki, K., Geochemical behavior of chromium, Resour. Geol., 1997, vol. 47, no. 6, pp. 319–330.

    Google Scholar 

  • Silantyev, S.A., Metamorphism in modern oceanic basins, Petrologiya, 1995, vol. 3, no. 1, pp. 24–36.

    Google Scholar 

  • Silantyev, S.A., Variations in the geochemical and isotopic characteristics of residual peridotites along the Mid-Atlantic Ridge as a function of the nature of the mantle magmatic sources, Petrology, 2003, vol. 11, no. 4, pp. 305–326.

    Google Scholar 

  • Silantyev, S.A., Baranov, B.V., and Kolesov, G.M., Geochemistry and petrology of amphibolites of the Shirshov Ridge, Bering Sea, Geokhimiya, 1985, no. 12, pp. 1694–1705.

    Google Scholar 

  • Silantyev, S.A., Mironenko, M.V., and Novoselov, A.A., Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. Modeling phase transitions and material balance: downwelling limb of a hydrothermal circulation cell Petrology, 2009, vol. 17, no. 2, pp. 138–157.

    Google Scholar 

  • Silantyev, S.A., Novoselov, A.A., Krasnova, E.A., et al., Silicification of peridotites at the Stalemate Fracture Zone (Northwestern Pacific): reconstruction of the conditions of low-temperature weathering and tectonic interpretation, Petrology, 2012, vol. 20, no. 1, pp. 21–39.

    Article  Google Scholar 

  • Silantyev, S.A., Portnyagin M.V., Krasnova E.A., et al., Petrology and geochemistry of plutonic rocks in the northwest Pacific Ocean and their geodynamic interpretation, Geochem. Int., 2014, vol. 52, no. 3, pp. 179–196.

    Article  Google Scholar 

  • Silantyev, S.A., Kubrakova, I.V., and Tyutyunnik, O.A., Distribution of siderophile and chalcophile elements in serpentinites of the oceanic lithosphere as an insight into the magmatic and crustal evolution of mantle peridotites, Geochem. Int., 2016, vol. 54, no. 12, pp. 1019–1034.

    Article  Google Scholar 

  • Sukhov, A.N., Chekhovich, V.D., Lander, A.V., et al., Age of the Shirshov submarine ridge basement (Bering Sea) based on the results of investigation of zircons using the U–Pb SHRIMP Method, Dokl. Earth Sci., 2011, vol. 439, no. 1, pp. 926–932.

    Article  Google Scholar 

  • Thakurta, J., Ripley, E.M., and Li, C., Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska, Geochem. Geophys. Geosyst., 2008, vol. 9, no. 7, pp. 3562–3585.

    Article  Google Scholar 

  • Timina, T.Yu., Kovyazin, S.V., and Tomilenko, A.A., The composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha Volcano (Kamchatka), Dokl. Earth Sci., 2012, vol. 442, no. 1, pp. 115–119.

    Article  Google Scholar 

  • Tsai, C.-H., Iizuka, Y., and Ernst, W.G., Diverse mineral compositions, textures, and metamorphic P-T conditions of the glaucophane-bearing rocks in the Tamayen melange, Yuli Belt, eastern Taiwan, J. Asian Earth Sci, 2013, vol. 63, pp. 218–233.

    Article  Google Scholar 

  • Tyutyunnik, O.A., Kubrakova, I.V., Silantyev, S.A., et al., Complex of methods for study of trace element composition of ocean-floor rocks, Tez. dokl. Tret’ego s"ezda analitikov Rossii (Proc. 3rd Conference of Analysts of Russia), Moscow: GEOKhI RAN, 2017, p. 323.

    Google Scholar 

  • Varfalvy, V., Hebert, R., Bedard, J., and Lafleche, M.R., Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Islands ophiolite, Newfoundland: implications for the genesis of boninitic and related magmas, Can. Mineral., 1997, vol. 35, pp. 543–570.

    Google Scholar 

  • Warren, J.M., Global variations in abyssal peridotite compositions, Lithos, 2015, p. 1016.

    Google Scholar 

  • Wasson, J.T. and Kallemeyn, G.W., Compositions of chondrites, Phil. Trans. R.S. London A, 1988, vol. 325, pp. 535–544.

    Article  Google Scholar 

  • Zhou, M.-F., Robinson, P.T., Malpas, J., et al., REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet, J. Petrol., 2005, vol. 46, pp. 615–639.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Silantyev.

Additional information

Original Russian Text © S.A. Silantyev, I.V. Kubrakova, M.V. Portnyagin, O.A. Tyutyunnik, A.V. Zhilkina, A.S. Gryaznova, K. Hoernle, R. Werner, 2018, published in Petrologiya, 2018, Vol. 26, No. 5, pp. 511–534.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silantyev, S.A., Kubrakova, I.V., Portnyagin, M.V. et al. Ultramafic–Mafic Assemblage of Plutonic Rocks and Hornblende Schists of Shirshov Rise, Bering Sea, and Stalemate Ridge, Northwest Pacific: Geodynamic Interpretations of Geochemical Data. Petrology 26, 492–514 (2018). https://doi.org/10.1134/S0869591118050077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591118050077

Keywords

Navigation