Skip to main content
Log in

Adakites and adakitic melts: Compositions of rocks, quenched glasses, and inclusions in minerals

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Data set of rocks and glasses whose compositions correspond to the term “adakite” (SiO2 > 56 wt %, Sr > 400 ppm, Sr/Y > 18) was compiled from two large geochemical data bases. It was revealed that the adakitic melts are characterized by extremely low abundance as compared to adakitic rocks. Only 50 adakitic compositions (~0.5%) were identified in the data base that includes the major and trace element compositions of over 9700 quenched and melt inclusion glasses. It was established that only 22 of selected analyses characterize melt inclusion glasses, while other analyses represent residual glass or “pocket melts” in ultramafic mantle xenoliths. The question of a genetic relationship between adakitic rocks, adakitic melts, and melting of subsiding plate remains open. Original data on the Shiveluch volcanic center (Kamchatka) were used to demonstrate the formation of adakitic signatures through mineral accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beard, J.S. and Lofgren, G.E, Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6–9 kb, J. Petrol., 1991, vol. 32, pp. 365–401.

    Article  Google Scholar 

  2. Billeni, G., Comin-Chiaramont, P., and Marques, L.S, Petrogenetic aspects of acid and basaltic lavas from the Parana plateau (Brazil): geological, mineralogical and petrochemical relationships, J. Petrol., 1986, vol. 27, pp. 915–944.

    Google Scholar 

  3. Bodinier, J.-I., Merlet, C., Bedini, R.M., et al., Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 545–550.

    Google Scholar 

  4. Borisov, A.A, Melting of diopside in sodium vapor: experimental study, in Tezisy XVIII Mezhdunarodnoi konferentsii “Rudnyi potentsial shchelochnogo, kimberlitovogo i karbonatitovogo magmatizma” (Proceedings of the 18th International Conference on the Ore Potential of Alkaline, Kimberlite, and Carbonatite Magmatism), 2011, pp. 30–31.

    Google Scholar 

  5. Castillo, P.R, An overview of adakite petrogenesis, Chin. Sci. Bull., 2006, vol. 51, pp. 257–267.

    Article  Google Scholar 

  6. Chazot, G., Menzies, M., and Harte, B, Silicate glasses in spinel lherzolites from Yemen: origin and chemical composition, Chem. Geol., 1996, vol. 134, pp. 159–179.

    Article  Google Scholar 

  7. Defant, M.J. and Drummond, M.S, Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 1990, vol. 347, pp. 662–665.

    Article  Google Scholar 

  8. Duan, X.Z., Sun, H., Yang, W., et al., Melt–peridotite interaction in the shallow lithospherie mantle of the North China Craton: evidence from melt inclusions in the quartzbearing orthopyroxene-rich websterite from Hannuoba, Int. Geol. Rev., 2014, vol. 56, pp. 448–472.

    Article  Google Scholar 

  9. Ducea, M. and Saleeby, J, Crustal recycling beneath continental arcs: silica-rich glass inclusions in ultramafic xenoliths from the Sierra Nevada, California, Earth Planet. Sci. Lett., 1998, vol. 156, pp. 101–116.

    Article  Google Scholar 

  10. Gioncada, A., Clocchiatti, R., Sbrana, A., et al., A study of melt inclusions at volcano (Aeolian Island, Italy): insights on the primitive magmas and on the volcanic feeding system, Bull. Volcanol., 1998, vol. 60, pp. 286–306.

    Google Scholar 

  11. Gorbach, N.V. and Portnyagin, M.V, Geology and Petrology of the lava complex of Young Shiveluch Volcano, Kamchatka, Petrology, 2011, vol. 19, no. 2, pp. 134–166.

    Article  Google Scholar 

  12. Gu, F., Fan, W.M., and Li, C.W, Geochemistry of Late Mesozoic adakites from the Sulu Belt, Eastern China: magma genesis and implications for crustal recycling beneath continental collisional orogens, Tectonics, 2006, vol. 143, pp. 1–13.

    Google Scholar 

  13. Gutsher, M.-A., Maury, F., and Eissen, J.-P, Can slab melting be caused by flat subduction?, Geology, 2000, vol. 28, pp. 535–538.

    Article  Google Scholar 

  14. Hilyard, M., Nielsen, R.L., Beard, J.S., et al., Experimental determination of the partitioning behavior of rare Earth and high field strength elements between paragasitic amphibole and natural silicate melts, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 1103–1120.

    Article  Google Scholar 

  15. GEOROC electronic database, Max Plank Institute fur Chemie, Mainz, Germany. http://georoc.mpchmainz. gwdg.de/ georoc/.

  16. Huang, F., Lundstrom, C., and McDonough, W, Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts, Am. Mineral., 2006, vol. 91, pp. 1385–1400.

    Article  Google Scholar 

  17. Humphreys, M.C.S., Blundy, J.D., and Sparks, R.S.J, Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning, J. Petrol., 2006, vol. 47, pp. 2303–2334.

    Article  Google Scholar 

  18. Humphreys, M.C.S., Blundy, J.D., and Sparks, R.S.J., Shallow-level decompression crystallization and deep magma supply at Shiveluch Volcano, Contrib. Mineral. Petrol., 2008, vol. 155, pp. 45–61.

    Article  Google Scholar 

  19. Kay, R.W, Aleutian magnesian andesites: melts from subducted Pacific ocean crust, J. Volcanol. Geotherm. Res., 1978, vol. 4, pp. 117–132.

    Article  Google Scholar 

  20. Kilian, R. and Stern, C.R, Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths, Eur. J. Mineral., 2002, vol. 14, pp. 25–36.

    Article  Google Scholar 

  21. Klein, M., Stosch, H.G., and Seck, H.A, Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study, Chem. Geol., 1997, vol. 138, pp. 257–271.

    Article  Google Scholar 

  22. Macpherson, C.G., Dreher, S.T., and Thirwall, M.F, Adakites without slab melting: high-pressure processing of basaltic island arc magma, Mindanao, Philippines, Earth Planet. Sci. Lett., 2006, vol. 243, pp. 581–593.

    Article  Google Scholar 

  23. Martin, H., Smithies, R.H., and Rapp, R, An overview of adakite, TTG and sanukitoid: relationships and some implications for crustal evolution, Lithos, 2005, vol. 79, pp. 1–24.

    Google Scholar 

  24. Moyen, J-F., High Sr/Y and La/Yb ratios: the meaning of the adakitic signature, Lithos, 2009, vol. 112, pp. 556–574.

    Article  Google Scholar 

  25. Naumov, V.B., Kovalenko, V.I., Babansky, A.D., and Tolstykh, M.L, Genesis of andesites: evidence from studies of melt inclusions in minerals, Petrology, 1997, vol. 5, no. 6, pp. 586–596.

    Google Scholar 

  26. Naumov, V.B., Kovalenko, V.I., Dorofeeva, V.A., et al., Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks, Geochem. Int., 2010, vol. 48, no. 12, pp. 1185–1207.

    Article  Google Scholar 

  27. Nielsen, R.L., Forsythe, L.M., Gallahan, W.E., et al., Major and trace-element magnetite–melt equilibria, Chem. Geol., 1994, vol. 117, pp. 167–191.

    Article  Google Scholar 

  28. Panina, L.I., Nikolaeva, A.T., and Rokosova, E.Yu., Crystallization conditions of the alkaline–basic dike from the Yllymakh Massif, Central Aldan: evidence from melt inclusion data in minerals, Geochem. Int., 2011, vol. 49, no. 2, pp. 120–138.

  29. Prouteau, G., Maury, R.C., Sajona, F.G., et al., Behavior of niobium, tantalum and other high-field-strength elements of adakites and related lavas from the Philippines, The Island Arc, 2000, no. 9, pp. 487–498.

    Google Scholar 

  30. Rapp, R., Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability, J. Geophys. Res., 1995, vol. 100, pp. 15601–15610.

    Article  Google Scholar 

  31. Reubi, O. and Blundy, J., A death of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites, Nature, 2009, vol. 461, pp. 1269–1273.

    Article  Google Scholar 

  32. Reubi, O., Blundy, J., and Varley, N.R, Volatiles contents, degassing and crystallisation of intermediate magmas at Volcan de Colima, Mexico, inferred from melt inclusions, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 1087–1105.

    Google Scholar 

  33. Richards, J.P, Special paper: adakite-like rocks: their diverse origin and questionable role in metallogenesis, Econ. Geol., 2007, vol. 102, pp. 537–575.

    Article  Google Scholar 

  34. Rowe, M.C., Peate, D.W., and Peate, I.U, An investigation into the nature of the magmatic plumbing system at Paricutin Volcano, Mexico, J. Petrol., 2011, vol. 52, pp. 2187–2220.

    Article  Google Scholar 

  35. Ruscitto, D.M., Wallace, P.J., and Kent, A.J.R, Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 109–132.

    Article  Google Scholar 

  36. Sajona, F.G., Maury, R.C., and Bellon, H, Initiation of subduction and generation of slab melts in western and eastern Mindanao, Philippines, Geology, 1993, vol. 21, pp. 1007–1010.

    Article  Google Scholar 

  37. Scambelluro, M., Vannucci, R., De Stefano, A., et al., CO2 fluid and silicate glass as monitors of alkali basalt/peridotite interaction in the mantle wedge beneath Gobernador Gregores, Southern Patagonia, Lithos, 2009, vol. 107, pp. 121–133.

    Google Scholar 

  38. Schiano, P., Clocchiatti, R., Shimizu, N., et al., Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 1995, vol. 377, no. 6550, pp. 595–600.

    Google Scholar 

  39. Schnurr, W.B.W., Trumbull, R.B., Clavero, J., et al., Twenty-five million years of silicic volcanism in the Southern Central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25 to 27°S, 67 to 72 °W, J.Volcanol. Geotherm. Res., 2007, vol. 166, pp. 17–46.

    Article  Google Scholar 

  40. Severs, M.J., Gryger, K.J., Makin, S.A., et al., Investigation of long-term geochemical variations and magmatic processes at Mount St. Helens, Geofluids, 2013, vol. 13, pp. 440–452.

    Article  Google Scholar 

  41. Straub, S., Gomez-Tuena, A., Stuart, F., et al., Formation of hybrid arc andesites beneath thick continental crust, Earth Planet. Sci. Lett., 2011, vol. 303, pp. 337–347.

    Article  Google Scholar 

  42. Szabo, C., Hidas, K., Bali, E., et al., Melt-wall rock interaction in the mantle shown by silicate melt inclusions in peridotite xenoliths from the Central Pannonian Basin (Western Hungary), J. Geol. Soc. India, 2009, vol. 18, pp. 375–400.

    Google Scholar 

  43. Tatsumi, Y, Geochemical modeling of partial melting of subduction sediment and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanic belt, Southern Japan, Geology, 2001, vol. 29, pp. 323–326.

    Google Scholar 

  44. Tatsumi, Y. and Takishiano, T, Operation of subduction factory and production of andesite, J. Mineral. Petrol. Sci., 2006, vol. 101, pp. 154–153.

    Article  Google Scholar 

  45. Tolstykh M.L., Naumov V.B., Babansky A.D., et al., The melt composition and crystallizational conditions of andesites from the Shiveluch Volcano in Kamchatka: evidence from mineral-hosted inclusions, Dokl. Earth Sci., 1998, vol. 359A, no. 3, p. 440–443.

    Google Scholar 

  46. Tolstykh M.L., Naumov B.V., Babansky A.D., et al., Chemical composition, volatile components, and trace elements in andesitic magmas of the Kurile-Kamchatka Region, Petrology, 2003, vol. 11, no. 5, 407–425.

    Google Scholar 

  47. Tolstykh, M.L., Pevzner, M.M., Naumov, V.B., et al., Types of parental melts of pyroclastic rocks of various structural–age complexes of the Shiveluch Volcanic Massif, Kamchatka: evidence from inclusions in minerals, Petrology, 2015, vol. 23, no. 5, pp. 480–518.

    Google Scholar 

  48. Tomilenko, A.A., Kovyazin, S.V., Sharapov, V.N., et al., Metasomatic recrystallization and melting of ultrabasic rocks of mantle wedge beneath Avacha Volcano, Abstracts of ACROFI-III, Novosibirsk, 2010, pp. 248–249.

    Google Scholar 

  49. Volynets O.N., Babanskii A.D., Gol’tsman Yu.V. Variations in isotopic and trace-element composition of lavas from volcanoes of the Northern Group, Kamchatka, in relation to specific features of subduction, Geochem. Int., 2000, vol. 38, no. 10, pp. 974–989.

    Google Scholar 

  50. Wulff-Pedersen, E., Neumann, E.-R., Vannucci, R., et al., Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands, Contrib. Mineral. Petrol., 1999, vol. 137, pp. 59–82.

    Article  Google Scholar 

  51. Xu, Y., Mercier, J-C., Menzies, M.A., et al., K-rich glassbearing wehrlite xenoliths from Yitong, northeastern China: petrological and chemical evidence for mantle metasomatism, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 406–420.

    Google Scholar 

  52. Yogodzinskiy, G.M. and Kelemen, P.B, Slab melting in the Aleutians: implication of an ion probe study of clinopyroxene in primitive adakite and basalt, Earth Planet. Sci. Lett., 1998, vol. 121, pp. 227–244.

    Google Scholar 

  53. Zhu, M., Miao, L., and Yang, S, Genesis and evolution of subduction-zone andesites: evidence from melt inclusion, Int. Geol. Rev., 2013, vol. 55, no. 10, pp. 1179–1190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Tolstykh.

Additional information

Original Russian Text © M.L. Tolstykh, V.B. Naumov, V.V. Yarmolyuk, 2017, published in Petrologiya, 2017, Vol. 25, No. 3, pp. 299–312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstykh, M.L., Naumov, V.B. & Yarmolyuk, V.V. Adakites and adakitic melts: Compositions of rocks, quenched glasses, and inclusions in minerals. Petrology 25, 304–317 (2017). https://doi.org/10.1134/S0869591117020059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117020059

Navigation