Skip to main content
Log in

Geothermochronology based on noble gases: III. Migration of radiogenic He in the crystal structure of native metals with applications to their isotopic dating

  • Published:
Petrology Aims and scope Submit manuscript

Abstracta

It was shown that the behavior of 4He in native and technical metals is very similar owing to the symmetric and stable electron shells of its atoms, which cannot gain electrons from other atoms or donate their own electrons to metal atoms in a crystal lattice. Therefore, they rapidly migrate toward grain boundaries and dislocations, where they are released as vesicles or He clusters. It was found that the thermal desorption of radiogenic He occurring in the crystal lattice of native metals as gas clusters requires activation energies of 100 and even 180 kcal/mol up to the attainment of the melting temperature of the metal. The frequency factor is several orders of magnitude higher than the limiting value k 0 ∼ 1013 s−1 for the migration of single atoms in the crystal lattice. Near the melting temperature and tens-hundreds degrees above it, the character of the thermal desorption of radiogenic 4He changes fundamentally. The migration is strongly accelerated, and sharp narrow peaks appear on the kinetic curves of thermal desorption. A similar phenomenon was observed during the annealing of technical metals and is known as the burst-effect. The destruction of the crystal structure results in the disappearance of helium clusters (vesicles). At the very high temperature, He migrates as individual atoms relatively rapidly from the melt. The activation energy for He thermal desorption and the pre-exponential frequency factor acquire values characteristic of ordinary migration. Such peculiarities of radiogenic He provide unique opportunities for its preservation in the structure of gold and other native metals below their melting temperatures. The rapid advances of (U-Th)/He geochronology is still hampered by the experimentally established extremely heterogeneous distribution of U, He, and, probably, Th in the structure of gold and other natural metals. This difficulty can be circumvented by the development of a method for the determination of the contents of all the mentioned chemical elements in a single aliquot from each sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashkinadze, G.Sh., Migratsiya radiogennykh izotopov v mineralakh (Migration of Radiogenic Isotopes in Minerals), Leningrad: Nauka, 1980.

    Google Scholar 

  • Astrelin, V.T, Burdakov, A.B., Polosatkin, V.B., and Postugaev, V.V., Blistering Phenomenon on the Material Surface at their Irradiation by Ion Beams, in Seminar of Thermonuclear Laboratories Novosibirsk: IYaF, 2005. www.inp.nsk.su/~soldatk/PlasmaSeminars/20051025/presentation.pdf.

    Google Scholar 

  • Azbel’, I.Ya. and Tolstikhin, I.N., Radiogennye izotopy i evolyutsiya mantii Zemli, kory i atmosfery (Radiogenic Isotopes and the Evolution of the Earth’s Mantle, Crust, and Atmosphere), Apatity: Akad. Nauk SSSR, 1988.

    Google Scholar 

  • Barnes, R.S. and Mazey, D.J., The Migration and Coalescence of Inert Gas Bubbles in Metals, in Proceedings of the Royal Society of London. Mathematica and Physical Science, 1963, Ser. A., vol. 275, pp. 47–57.

    Article  Google Scholar 

  • Binyukova, S.Yu., Chernov, I.I., Kalin, B.A., Mjo Khtet Vin, and Kompaniets, N.T., Formation of Helium Porosity in Different Materials at Post-Radiation Annealing, At. Energ., 2005, vol. 99, no. 2, pp. 115–120.

    Google Scholar 

  • Brovko, A.P., Bekman, I.N., and Zaborenko, K.B., Radon Thermodesorption from Aluminum, Radiokhimiya, 1979, vol. 21, no. 4, pp. 531–534.

    Google Scholar 

  • Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd Ed., Oxford: Clarendon, 1959.

    Google Scholar 

  • Cherdantsev, Yu.P., Behavior of the Metal-Hydrogen System at Radiation Impact, Doctoral (Physmath.) Dissertation, Tomsk: Tomsk. Tekhnol. Univ., 2005.

    Google Scholar 

  • Chernov, I.P., Mamontov, F.P., Tjurin, J.I., and Cherdancev, J.P., Hydrogen Migration in Stainless Steel and Titanium Alloys, Stimulation by Ionizing Radiation, J. Nucl. Mater, 1996, vol. 233–237, pp. 1118–1122.

    Article  Google Scholar 

  • Das, S.K. and Kaminsky, M., Radiation Blistering in Metals and Alloys, Adv. Chem., 1976, vol. 158, pp. 112–170.

    Article  Google Scholar 

  • Eugster, O., Niedermann, S., Thalmann, C., Frei, R., Kramers, J., Kraehenbuehl, U., Liu, Y.Z., Hofmann, B., Boer, R.H., Reimold, W.U., and Bruno, L., Noble Gases, K, U, Th, and Pb in Native Gold, J. Geophys. Res., 1995, vol. 100, no. B12, pp. 24677–24689.

    Article  Google Scholar 

  • Evans, J.H., An Inter Bubble Fracture Mechanism of Blister Formation on Helium-Irradiated Metals, J. Nucl. Mater., 1977, vol. 68, pp. 129–140.

    Article  Google Scholar 

  • Fechtig, H. and Kalbitzer, S., The Diffusion of Argon in Potassium-Bearing Solids, in Potassium Argon Dating, Berlin-Heidelberg: Springer-Verlag, 1966, pp. 68–107.

    Google Scholar 

  • Garner, F.A., Oliver, B.M., Greenwood, L.R., Edwards, D.J., and Bruemer, S.M., Pacific Northwest National Laboratory, 2010. webmaster@pnl.g Bruemer

  • Garner, F.A., Oliver, B.M., Greenwood, L.R., Edwards, D.J., and Bruemer, S.M., Generation and Retention of Helium and Hydrogen in Austenitic Steels Irradiated in a Variety of and Test Reactor Spectral Environments, in 9th Meeting on Environmental Degradation of Materials, Tahoe, Utah, 2001, pp. 54–72

  • Gerling, E.K., Sovremennoe sostoyanie argonovogo metoda opredeleniya vozrasta i ego primenenie v geologii (Modern State of Argon Method of Age Determination and its Application in Geology), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

  • Gerling, E.K., Activation Energy of the Helium Diffusion as Criteria for Availability of Minerals for Age Determination using Helium Method, Dokl. Akad. Nauk SSSR, 1939b, vol. 24, no. 6, pp. 570–573.

    Google Scholar 

  • Gerling, E.K., Modes of Helium Occurrence in Minerals and Helium Migration in Them, Doctoral (Geolmin.) Dissertation, Leningrad: Radievyi in-t im. V.G. Khlopina., 1939a.

    Google Scholar 

  • Ghoniem, N., Sharafat, S., and Williams, J., MANSUR 1. Theory of Helium Transport and Clustering in Materials Under Irradiation, J. Nucl. Mater., 1983, vol. 117, pp. 96–105.

    Article  Google Scholar 

  • Gol’tsev, V.P. and Guseva, T.M., Properties and Behavior of the Irradiated Boron Carbide, Pogloshchayushchie Materialy i Sterzhni Regulirovaniya Bystrykh Reaktorov, (Absorption Properties and Rods Regulating the Fast Reactors), 1973, pp. 293–316.

  • Holland, H.D., Radiation Damage and its Use in Age Determination, in Nuclear Geology, Faul, H., Ed., New York: Wiley, 1954, pp. 175–179.

    Google Scholar 

  • Horwitz, E.Ph., Dietz, M.L., Chiarizia, R., Diamond, H., Essling, A.M., and Graczyk, D., Separation and Preconcentration of Uranium from Acidic Media by Extraction Chromatography, Anal. Chim. Acta, 1992, vol. 266, pp. 25–37.

    Article  Google Scholar 

  • Huheey, J.E., Keiter, E.A, and Keiter, R.L., Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed, New York: Harper Collins, 1993.

    Google Scholar 

  • Iwakiri, H., Yasunaga, K., Morishita, K., and Yoshida, N., Microstructure Evolution in Tungsten during Low-Energy Helium Ion Irradiation, J. Nucl. Mater., 2000, vol. 283–287, pp. 1134–1138.

    Article  Google Scholar 

  • James, A.M. and Lord, M.P., Macmillan’s Chemical and Physical Data, London: UK. Macmillan, 1992.

    Google Scholar 

  • Jäger, W., Matzke, R., Trinkaus, H., Zeller, R., Crecelius, J., and Fink, G., The Density and Pressure of Helium in Bubbles in Metals, Radiat. Eff. Defects Solids, 1983, vol. 78, pp. 315–325.

    Article  Google Scholar 

  • Kalin, B.A., Chernov, I.I., Kalashnikov, A.N., and Binyukova, S.Yu., Helium Behavior and Features of Microstructure Evolution in Model Nickel and Vanadium Alloys, At. Energ., 2008, vol. 104, no. 1, pp. 13–17.

    Google Scholar 

  • Klyavin, O.V., Mamyrin, B.A., Khabarin, L.V., and Chernov, Yu.M., Analysis of Dynamic Dislocation-Assisted Penetration of Helium into Tin and Cadmium Deformed by Stretching in Liquid Helium, Phys. Sol. State, 2002, vol. 44, no. 2, pp. 302–307.

    Article  Google Scholar 

  • Klyavin, O.V., Nikolaev, V.I, Smirnov, B.I., Khabarin, L.V., Chernov, Yu.M., and Shpeizman, V.V., Mechanodynamic Diffusion of Helium Atoms into Porous Copper, Phys. Sol. State, 2008, vol. 50, no. 5, pp. 828–831.

    Article  Google Scholar 

  • Kompaniets, T.N., On Problem of Steel Selection for DEMO Reactor, Vopr. Atom. Nauki Tekhn. Ser. Termoyad. Sintez, 2009, no. 3, pp. 16–24.

  • Kopanets, I.E., Tolstolutskaya, G.D., Ruzhitskii, V.V., and Karpov, S.A., Entrapment of Deuterium on Traps Created in Steel Kh18N10T at Irradiation by High-Energy Argon Ions, Vopr. Atom. Nauki Tekhn. Ser. Fiz. Radiats. Povrezhd. Radiats. Materialoved., 2008, no. 2. pp. 37–42.

  • Koroteev, Yu.M., Lopatina, O.V., and Chernov, I.P., Structure Stability and Electronic Properties of the Zr-He System: First-Principles Calculations, Phys. Solid State, 2009, vol. 51, pp. 1600–1607.

    Article  Google Scholar 

  • Krogh, T.E., A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  • Krylov, D.P. and Shukolyukov, Yu.A., Xenon Migration in Zircons Petrologiya, 1994, vol. 2, no. 3, pp. 259–265.

    Google Scholar 

  • Loshmanov, L.P., Vliyanie oblucheniya na mekhanicheskie kharakteristiki konstruktsionnykh materialov (Influence of Irradiation on the Mechanical Characteristics of Materials), Moscow: MIFI, 1983.

    Google Scholar 

  • Low-Temperature Thermochronology, Rosso, Jodi J., Ed., Rev. Mineral. Geochem., 2005, vol. 58.

  • Ludwig, K.R., PBDAT, A Computer Program Processing Pb-U-Th Isotope Data. Version 1.24. US. Geol. Surv. Open File Rept., 1993, no. 88-542.

  • Nagata, S. and Takahiro, K., Effect of Helium Irradiation on Trapping and Thermal Release of Deuterium Implanted in Tungsten, J. Nucl. Mater., 2001, vol. 290–293, pp. 135–139.

    Article  Google Scholar 

  • Neklyudov, I.M. and Tolstolutskaya, G.D., Helium and Hydrogen in Constructional Materials, Vopr. Atomn. Nauki Tekhn. Ser. Fiz. Rad. Povrezhd. Rad. Materialoved., 2003, no. 3, pp. 3–14.

  • Pettke, T., Frey, R., Kramers, J.D., and Villa, I.M., Isotope Systematics in Vein Gold from Brusson, Val D’Ayas (NW Italy): 2. (U+Th)/He and K/Ar in Native Au and Its Fluid Inclusions, Chem. Geol., 1997, vol. 135, pp. 173–187.

    Article  Google Scholar 

  • Porterfield, W.W., Inorganic chemistry, a Unified Approach, Massachusetts: Addison Wesley, 1984.

    Google Scholar 

  • Posukhova, T.V., Gold Storages of Nature, Sorosovsk. Obraz. Zh., 2001, no. 7, pp. 67–74.

  • Reimold, W.U., Meshik, A.P., Smits, G., Pravdivtseva, O.V., and Shukolyukov, Y.A., Fission Xenon Dating of Witwatersrand Uraninites: Implications for Geological Activity in the Central Kaapvaal Craton About 1 Ga Ago, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 24, pp. 5177–5190.

    Article  Google Scholar 

  • Ruedl, E. and Schiller, P., The Behaviour of He-Bubbles in Metals during High Plastic Deformation, J. Nucl. Mater., 1979, vol. 85–86, pp. 769–773.

    Article  Google Scholar 

  • Sanderson, R.T., Chemical Periodicity, New York: Reinhold, 1962.

    Google Scholar 

  • Schultz, L. and Franke, L., Helium, Neon and Argon in Meteorites. A Data Collection. Update 2002, Mainz: Max-Planck-Institut fuer Chemie, Abteilung Kosmochemie, 2002.

    Google Scholar 

  • Shukolyukov, Yu.A. and Ashkinadze, G.Sh., Complex Study of Helium, Argon, and Xenon Migration in Some Minerals, Geokhimiya, 1967, no. 10, pp. 1082–1097.

  • Shukolyukov, Yu.A. and Levskii, L.K., Geokhimiya i kosmokhimiya izotopov blagorodnykh gazov (Geochemistry and Cosmochemistry of Noble Gas Isotopes), Moscow: Atomizdat, 1972.

    Google Scholar 

  • Shukolyukov, Yu.A., Delenie yader urana v prirode (Uranium Nuclear Fission in Nature), Moscow: Atomizdat, 1970.

    Google Scholar 

  • Shukolyukov, Yu.A., Fugzan, M.M., Paderin, I.P., Sergeev, S.A., and Krylov, D.P., Geothermochronology Based on Noble Gases: I. Stability of the U-Xe Isotopic System in Nonmetamict Zircons, Petrology, 2009, vol. 17, no. 1, pp. 1–24.

    Article  Google Scholar 

  • Shukolyukov, Yu.A., Meshik, A.P., Krylov, D.P., and Pravdivtseva, O.V., Noble Gas Geochemistry and Cosmochemistry, Matsuda, J., Ed., Tokyo: Terra Science, 1994.

    Google Scholar 

  • Shukolyukov, Yu.A., Yakubovich, O.V., and Rytsk, E.Yu., About Possibility of Isotope Dating of Native Gold by the (U-Th)/He Method, Dokl. Earth Sci., 2010, vol. 430, no. 2, pp. 1–5.

    Google Scholar 

  • Svetukhin, V.V., Suslov, D.N., and Risovanyi, V.D., Model of Desorption of Inert Gases from Irradiated Reactor Materials, 2005. http://www/niir.ru.

  • Table of Interatomic Distances and Configuration in Molecules and Ions, Sutton, L.E., Ed., Chem. Soc. London. Sp. Publ., 1965, vol. 18, Suppl. 1956–1959.

  • Tolstolutskaya, G.D., Ruzhitskii, V.V., Kopanets, I.E., Karpov, S.A., Bryk, V.V., and Voevodin, V.N., Influence of Ion-Implanted Helium on Deuterium in Steel Kh18N10T, Vopr. Atom. Nauki Tekhn. Ser. Fiz. Rad. Povrezhd. Rad. Materialoved., 2004, no. 3, 3–9.

  • Tugarinov, A.I. and Bibikova, E.V., Geokhronologiya Baltiiskogo shchita po dannym tsirkonometrii (Geochronology of the Baltic Shield based on Zirconometry Data), Moscow: Nauka, 1980.

    Google Scholar 

  • Van Siclen, C.D., Wright, R.N., and Usmar, S.G., Anomalous Helium Bubble Diffusion in Dilute Aluminum Alloys, Phys. Rev. Lett., 1992, vol. 68, no. 26, pp. 3892–3895.

    Article  Google Scholar 

  • Yakubovich, O.V., Shukolyukov, Yu.A., Kotov, A.B., Yakovleva, S.Z., and Sal’nikova, E.B., Geothermochronology Based on Noble Gases: II. Stability of the (U-Th)/He Isotope System in Zircon, Petrology, 2010, vol. 18, no. 6, pp. 555–570.

    Article  Google Scholar 

  • Zaluzhnyi, A.G. and Suvorov, A.P., Influence of Saturation Conditions and Structure on the Helium Retention in Constructional Metrials, Zh. Tekhn. Fiz., 2001, vol. 71, no. 2, pp. 55–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shukolyukov.

Additional information

Original Russian Text © Yu.A. Shukolyukov, O.V. Yakubovich, S.Z. Yakovleva, E.B. Sal’nikova, A.B. Kotov, E.Yu. Rytsk, 2012, published in Petrologiya, 2012, Vol. 20, No. 1, pp. 3–24.

This paper continues a series of contributions, including Yu.A. Shukolyukov, M.M. Fugzan, I.P. Paderin, S.A. Sergeev, and D.P. Krylov, “Geothermochronology Based on Noble Gases: I. Stability of the U-Xe Isotopic System in Nonmetamict Zircons,” Petrology 17 (1), 1–24 (2009); and O.V. Yakubovich, Yu.A. Shukolyukov, A.B. Kotov, S.Z. Yakovleva, and E.B. Sal’nikova, “Geothermochronology Based on Noble Gases: II. Stability of the (U-Th)/He Isotope System in Zircon,” Petrology 18 (6), 555–570 (2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukolyukov, Y.A., Yakubovich, O.V., Yakovleva, S.Z. et al. Geothermochronology based on noble gases: III. Migration of radiogenic He in the crystal structure of native metals with applications to their isotopic dating. Petrology 20, 1–20 (2012). https://doi.org/10.1134/S0869591112010043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591112010043

Keywords

Navigation