Skip to main content
Log in

Crystalline complexes of the Tarbagatai block of the Early Caledonian superterrane of Central Asia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The oldest crystalline complexes of the Early Caledonian superterrane of Central Asia were formed in the Early Precambrian. They are exposed in the basement of microcontinents, which represent old cratonic fragments. Among the latters are the crystalline complexes of the Tarbagatai block previously ascribed to the Dzabkhan microcontinent. It was shown that the crystalline complexes of the Tarbagatai block have a heterogeneous structure, consisting of the Early Precambrian and later Riphean lithotectonic complexes. Structurally, the Early Precambrian complexes are made up of tectonic sheets of gneisses, migmatites, and gneiss granites of the Ider Complex that are cut by gabbroanorthosite massif. The Riphean Jargalant Complex comprises alternating hornblende crystalline schists and biotite (sometimes sillimanite-bearing) gneisses with marble horizons. The upper age boundary of the Riphean Complex is determined by the subautochthonous granitoids with age about 810 Ma. The presence of the Riphean high-grade rocks indicates that structures with newly formed crust were formed in the paleooceanic framing of the Early Precambrian blocks of the Rodinia supercontinent by the Mid-Late Riphean. Divergence that began at that time within old Rodinian cratons and caused rifting and subsequent break-up of the supercontinent was presumably changed by convergence in the paleooceanic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anisimova, I.V., Kozakov, I.K., Yarmolyuk, V.V., et al., Age, Sources, and Geological Position of Anorthosites of Precambrian Terranes of Central Asia: Example from the Hunzhilingol Massif, Central Mongolia, Dokl. Akad. Nauk, 2009, vol. 428, no. 1, pp. 80–86 [Dokl. Earth Sci. (Engl. Transl.), vol. 428, no. 1, pp. 1120–1125].

    Google Scholar 

  • Azimov, P.Ya. and Kozakov, I.K., Na-K Pargasite in the Altered Anorthosites of the Hunzhilingol Massif, Hangay, Northern Mongolia, in Mater. soveshch. “Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu)” (Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central-Asian Mobile Belt: from Ocean to Continent), Irkutsk: IZK SO RAN, 2008, vol. 1, p. 13.

    Google Scholar 

  • Condie, K.C., Continental Growth During Formation of Rodinia, Gondwana Research, 2001, vol. 4, no. 1, pp. 5–16.

    Article  Google Scholar 

  • Demoux, A., Kroner, A., Liu, D., and Badarch, G., Precambrian Crystalline Basement in Southern Mongolia As Revealed by SHRIMP Zircon Dating, Int. J. Earth Sci., 2009, vol. 98, pp. 1365–1380.

    Article  Google Scholar 

  • Karta geologicheskikh formatsii Mongol’skoi Narodnoi Respubliki. Masshtab 1: 1500000 (Map of the Geological Formation of the Mongolian People’s Republic. Scale 1: 1500000), Yanhsin, A.L., Ed., Moscow: GUGK SSSR, 1989.

    Google Scholar 

  • Kheraskova, T.N., Bush, V.A., Didenko, A.N., and Samygin, S.G., Breakup of Rodinia and Early Stages of Evolution of the Paleoasian Ocean, Geotektonika, 2010, no. 1, pp. 5–28 [Geotectonics (Engl. Transl.), no. 1, pp. 3–24].

  • Kovach, V.P., Yarmolyuk, V.V., Kovalenko, V.I., et al., Neoproterozoic Crust-Forming Events in the Eastern Segment of the Central-Asian Fold Belt: Geochronological and Nd-Isotope Data, in Mater. soveshch. “Izotopnye sistemy i vremya geologicheskikh protsessov” (Proceedings of Conference on Isotope Systems and Time of Geological Processes), St. Petersburg: Tsentr informatsionnoi kul’tury, 2009, pp. 240–243.

    Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., et al., Isotope Provinces, Mechanisms of Generation and Sources of Continental Crust in the Central Asian Mobile Belt: Geological and Isotopic Evidence, J. Asian Earth Sci., 2004, vol. 23, pp. 605–627.

    Article  Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Tomurtogo, O., et al., Geodynamics and Crust-Forming Processes in the Early Caledonides of the Bayanhongor Zone, Central Mongolia, Geotektonika, 2005, no. 4, pp. 154–174 [Geotectonics (Engl. Transl.), no. 4, pp. 298–316].

  • Kozakov, I.K., Anisimova, I.V., Sal’nikova, E.B., et al., Riphean Metamorphic Complexes of the Songa Block of the Early Caledonian Subterrane of Central Asia, in Mater. soveshch. “Izotopnye sistemy i vremya geologicheskikh protsessov” (Proceedings of Conference “Isotope Systems and Time of Geological Processes”), St. Petersburg: Tsentr informatsionnoi kul’tury, 2009, vol. 1, pp. 249–251.

    Google Scholar 

  • Kozakov, I.K., Kotov, A.B., Kovach, V.P., and Sal’nikova, E.B., Crustal Growth in the Geologic Evolution of the Baidarik Block, Central Mongolia: Evidence from Sm-Nd Isotopic Systematics, Petrologiya, 1997, vol. 5, no. 3, pp. 240–248 [Petrology (Engl. Transl.), vol. 5, no. 3, pp. 201–207].

    Google Scholar 

  • Kozakov, I.K., Natman, A., Sal’nikova, E.B., et al., Metasedimentary Complexes of the Tuva-Mongolian Massif: Age, Provenances, and Tectonic Position, Stratigr. Geol. Korrelyatsiya, 2005, vol. 13, no. 1, pp. 1–20 [Stratigr. Geol. Correlation (Engl. Transl.), vol. 13, no. 1, pp. 1–20].

    Google Scholar 

  • Kozakov, I.K., Sal’nikova, E.B., Kovach, V.P., et al., Vendian Stage in Formation of the Early Caledonian Superterrane in Central Asia, Stratigr. Geol. Korrelyatsiya, 2008, vol. 16, no. 4, pp. 14–39 [Stratigr. Geol. Correlation (Engl. Transl.), vol. 16, no. 4, pp. 360–382].

    Google Scholar 

  • Kozakov, I.K., Sal’nikova, E.B., Vang, T., et al., Early Precambrian Crystalline Complexes of the Central Asian Microcontinent: Age, Sources, Tectonic Position, Stratigr. Geol. Korrelyatsiya, 2007, vol. 15, no. 2, pp. 3–24 [Stratigr. Geol. Correlation (Engl. Transl.), vol. 15, no. 2, pp. 121–140].

    Google Scholar 

  • Krogh, T.E., A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  • Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., et al., The Sr Isotopic Characterization and Pb-Pb Age of Carbonate Rocks from the Satka Formation, the Lower Riphean Burzyan Group of the Southern Urals, Stratigr. Geol. Korrelyatsiya, 2008, vol. 16, no. 2, pp. 16–34 [Stratigr. Geol. Correlation (Engl. Transl.), vol. 16, no. 2, pp. 120–137].

    Google Scholar 

  • Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., et al., Sr Isotope Composition in Carbonates of the Karatau Group, Southern Urals, and Standard Curve of 87Sr/86Sr Variations in the Late Riphean Ocean, Stratigr. Geol. Korrelyatsiya, 2003, vol. 11, no. 5, pp. 3–39 [Stratigr. Geol. Correlation (Engl. Transl.), vol. 11, no. 5, pp. 415–449].

    Google Scholar 

  • Levashova, N.M., Kalugin, V.M., Gibsher, A.S., et al., The Origin of the Baidaric Microcontinent, Mongolia: Constraints from Paleomagnetism and Geochronology, Tectonophysics, 2010, vol. 485, pp. 306–320.

    Article  Google Scholar 

  • Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., and Zhou, H., Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton South China, and Correlations with Other Continents: Evidence for a Mantle Superplume That Broke Up Rodinia, Precambrian Res., 2003, vol. 122, pp. 85–109.

    Article  Google Scholar 

  • Lu, S., Li, H., Zhang, Ch., and Niu, G., Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments, Precambrian Res., 2008b, vol. 160, pp. 94–107.

    Article  Google Scholar 

  • Lu, S., Zhao, G., Wang, Hu., and Hao, G., Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review, Precambrian Res., 2008a, vol. 160, pp. 77–93.

    Article  Google Scholar 

  • Ludwig, K.R., ISOPLOT/Ex.Version 2.06. A Geochronological Toolkit for Microsoft Excel, Berkley Geochronol, Center Spec. Publ., 1999, no. 1a.

  • Ludwig, K.R., PbDat for MS-DOS, Version 1.21, U.S. Geol. Survey Open-File Rept, 1991, no. 88–542.

  • Mitrofanov, F.P., Kozakov, I.K., and Palei, I.P., Dokembrii Zapadnoi Mongolii i Yuzhnoi Tuvy (Precambrian Rocks of Western Mongolia and Southern Tuva), Leningrad: Nauka, 1981.

    Google Scholar 

  • Mossakovskii, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Central-Asian Fold Belt: Geodynamic Evolution and History of Formation, Geotektonika, 1993, no. 6, pp. 3–32.

  • Ovchinnikova, G.V., Vasil’eva, I.M., Kuznetsov, A.B., et al., Isotope Rb-Sr-Nd Signatures of Source of the Anorthosites of the Hunzhilingol and Olonkhuduk Massifs, Central Mongolia, in Mater. 19th simpoziuma po geokhimii izotopov imeni akademika A.P. Vinogradova (Proceedings of 19th Vinogradov Symposium on Isotope Geochemistry), Moscow, 2010, pp. 277–281.

  • Pearce, J., Harris, N.B.W., and Tindle, A.G., Trace Element Distribution Diagrams for the Tectonic Interpretation of Granitic Rock, J. Petrol., 1984, vol. 25, pp. 956–983.

    Google Scholar 

  • Rogers, J.J.W. and Santosh, M., Configuration of Columbia, a Mesoproterozoic Supercontinent, Gondwana Res., 2002, vol. 5, no. 1, pp. 5–22.

    Article  Google Scholar 

  • Rogers, J.J.W. and Santosh, M., Supercontinents in Earth History, Gondwana Res., 2003, vol. 6, no. 3, pp. 357–368.

    Article  Google Scholar 

  • Rytsk, E.Yu., Kovach, V.P., Yarmolyuk, V.V., and Kovalenko, V.I., Structure and Evolution of the Continental Crust in the Baikal Fold Region, Geotektonika, 2007, no. 6, pp. 23–51 [Geotectonics (Engl. Transl.), no. 6, pp. 440–464].

  • Semikhatov, M.A., Kuznetsov, A.B., Gorokhov, I.M., et al., Low 87Sr/86Sr Ratios in Seawater of the Grenville and post-Grenville Time: Determining Factors, Stratigr. Geol. Korrelyatsiya, 2002, vol. 10, no. 1, pp. 3–46 [Stratigr. Geol. Correlation (Engl. Transl.), vol. 10, no. 1, pp. 1–41].

    Google Scholar 

  • Stacey, J.S. and Kramers, I.D., Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Article  Google Scholar 

  • Steiger, R.H. and Jager, E., Subcomission of Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.

    Google Scholar 

  • Sun, S.S. and McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes, in Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Ed., Geol. Soc. London Spec. Publ., 1989, vol. 42, pp. 313–345.

  • Tektonicheskaya karta Severnoi Evrazii. Masshtab 1: 5000000 (Tectonic Map of Northern Eurasia. Scale 1: 5000000), Moscow: GUGK SSSR, 1978.

  • Wang, J. and Li, Z.X., History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up, Precambrian Res., 2003, vol. 122, pp. 141–158.

    Article  Google Scholar 

  • Yarmolyuk, V.V. and Kovalenko, V.I., Late Riphean Breakup between Siberia and Laurentia: Evidence from Intraplate Magmatism, Dokl. Akad. Nauk, 2001, vol. 379, no. 1, pp. 94–98 [Dokl. Earth Sci. (Engl. Transl.), vol. 379, no. 1, pp. 525–528].

    Google Scholar 

  • Yarmolyuk, V.V., Kovalenko, V.I., Anisimova, I.V., et al., Late Riphean Alkali Granites of the Dzabhan Microcontinent: Evidence for the Timing of Rodinia Breakup and Formation of Microcontinents in the Central Asian Fold Belt, Dokl. Akad. Nauk, 2008a, vol. 420, no. 3, pp. 375–381 [Dokl. Earth Sci. (Engl. Transl.), vol. 420, no. 3, pp. 583–588].

    Google Scholar 

  • Yarmolyuk, V.V., Kovalenko, V.I., Kozakov, I.K., et al., The Age of the Khangai Batholith and the Problem of Batholith Formation in Central Asia, 2008b, vol. 423, no. 1, pp. 92–98 [Dokl. Earth Sci. (Engl. Transl.), vol. 423, no. 1, pp. 1223–1228].

    Google Scholar 

  • Yarmolyuk, V.V., Kovalenko, V.I., Sal’nikova, E.B., et al., U-Pb Age of Syn- and Postmetamorphic Granitoids of South Mongolia: Evidence for the Presence of Grenvillides in the Central Asian Foldbelt, Dokl. Akad. Nauk, 2005, vol. 404, no. 1, pp. 84–89 [Dokl. Earth Sci. (Engl. Transl.), vol. 404, no. 1, pp. 986–990].

    Google Scholar 

  • Yarmolyuk, V.V., Kozakov, I.K., Anisimova, I.V., et al., Age Estimate of the Ophiolite Complex in the Songa Block of the Early Caledonian Superterrane of Central Asia, in Mater. soveshch. “Izotopnye sistemy i vremya geologicheskikh protsessov” (Proceedings of Conference “Isotope Systems and Time of Geological Processes”), St. Petersburg: Tsentr informatsionnoi kul’tury, 2009, vol. 2, pp. 297–300.

    Google Scholar 

  • Zhao, G., Wilde, S.A., Sun, M., et al., SHRIMP U-Pb Zircon Ages of Granitoid Rocks in the Luliang Complex: Implications for the Accretion and Evolution of the Trans-North China Orogen, Precambrian Res., 2008, vol. 160, pp. 213–226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kozakov.

Additional information

Original Russian Text © I.K. Kozakov, A.M. Kozlovsky, V.V. Yarmolyuk, V.P. Kovach, E.V. Bibikova, T.I. Kirnozova, Yu.V. Plotkina, N.Yu. Zagornaya, M.M. Fugzan, Ch. Erdenejargal, V.I. Lebedev, G. Eenjin, 2011, published in Petrologiya, 2011, Vol. 19, No. 4, pp. 445–464.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozakov, I.K., Kozlovsky, A.M., Yarmolyuk, V.V. et al. Crystalline complexes of the Tarbagatai block of the Early Caledonian superterrane of Central Asia. Petrology 19, 426–444 (2011). https://doi.org/10.1134/S0869591111040047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591111040047

Keywords

Navigation