Skip to main content
Log in

Simplified Model of Voids Able to Mimic Accelerating Expansion at High z without Dark Energy

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We present a simplified model of voids in the Universe. Using this model, we investigate the effect of inhomogeneities on light propagation. We calculate the corresponding Hubble diagrams and compare them to those expected in different cosmological models. We find that voids in a universe containing only nonrelativistic matter can mimic accelerating expansion as far as Hubble diagrams are concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Nielsen, A. Guffanti, and S. Sarkar, “Marginal evidence for cosmic acceleration from Type Ia supernovae,” Scientific Reports 6 (2016).

    Google Scholar 

  2. A. Feoli et al., “Cosmological constraints from supernova data set with corrected redshift,” J. Phys. Conf. Series 354, 012005 (2012).

    Article  Google Scholar 

  3. M. M. Phillips, “The absolute magnitudes of Type IA supernovae,” Astroph. J. 413, L105–L108 (1993).

    Google Scholar 

  4. D. Kushnir et al., “Head-on collisions of white dwarfs in triple systems could explain type Ia supernovae,” Astroph. J. Letters 778, L37 (2013).

    Google Scholar 

  5. A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  6. S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astroph. J. 517, 565 (1999).

    Article  ADS  MATH  Google Scholar 

  7. A. Einstein and E.G. Straus, “The influence of the expansion of space on the gravitation fields surrounding the individual stars,” Rev. Mod. Phys. 17, 120 (1945).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. G. Bene, V. Czinner, and M. Vasuth, “Accelerating expansion of the universe may be caused by inhomogeneities,” Mod. Phys. Lett. A 21, 1117–1125 (2006).

    Article  ADS  MATH  Google Scholar 

  9. T. Biswas and A. Notari, “’Swiss-cheese’ inhomogeneous cosmology and the dark energy problem,” JCAP 2008.06, 021 (2008).

    Google Scholar 

  10. K. Bolejko and M.-N. Celerier, “Szekeres Swisscheese model and supernova observations,” Phys. Rev. D 82, 103510 (2010).

    Article  ADS  Google Scholar 

  11. M.-N. Celerier, “The accelerated expansion of the universe challenged by an effect of the nhomogeneities,” astro-ph/0702416.

  12. V. Marra et al., “Cosmological observables in a Swiss-cheese universe,” Phys. Rev. D 76, 123004 (2007).

    Article  ADS  Google Scholar 

  13. S. Khakshournia and R. Mansouri, “Matching LTB and FRW space-times through a null hypersurface,” Grav. Cosmol. 14, 295–300 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Lavinto, S. Rasanen, and S. J. Szybka, “Average expansion rate and light propagation in a cosmological Tardis spacetime,” JCAP 2013.12, 35 (2013); arXiv: 1308.6731.

    Google Scholar 

  15. S. Rasanen, “Dark energy from backreaction,” JCAP 0402, 003 (2004); astro-ph/0311257.

    ADS  Google Scholar 

  16. M. Mars, F. C. Mena, and R. Vera, “Review on exact and perturbative deformations of the Einstein-Straus model: uniqueness and rigidity results,” Gen. Rel. Grav. 45, 2143–2173 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Notari, “Late time failure of Friedmann equation,” Mod. Phys. Lett. A 21, 2997–3007 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Feoli and E. Benedetto, “Dark energy or local acceleration,” Grav. Cosmol. 23, 240–244 (2017).

    Article  ADS  MATH  Google Scholar 

  19. C.G. Tsagas, “Large-scale peculiarmotions and cosmic acceleration,” Mon. Not. R. Astron. Soc. 405, 503–508 (2010).

    ADS  Google Scholar 

  20. C. G. Tsagas, “Peculiar motions, accelerated expansion, and the cosmological axis,” Phys. Rev. D 84, 063503 (2011).

    Article  ADS  Google Scholar 

  21. C. G. Tsagas and M. I. Kadiltzoglou, “Peculiar Raychaudhuri equation,” Phys. Rev. D 88, 083501 (2013).

    Article  ADS  Google Scholar 

  22. C. G. Tsagas and M. I. Kadiltzoglou, “Deceleration parameter in tilted Friedmann universes,” Phys. Rev. D 92, 043515 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Del Campo, V. H. Cardenas, and R. Herrera, “Presence of anisotropic pressures in Lemaitre-Tolman-Bondi cosmological models,” Mod. Phys. Lett. A 27, 1250213 (2012).

    Article  ADS  MATH  Google Scholar 

  24. I. Szapudi et al., “Detection of a supervoid aligned with the cold spot of the cosmic microwave background,” Mon. Not. R. Astron. Soc. 450, 288–294 (2015).

    Article  ADS  Google Scholar 

  25. L. A. Thompson and S. A. Gregory, “An historical view: the discovery of voids in the galaxy distribution,” arXiv: 1109.1268.

  26. D. C. Pan et al., “Cosmic voids in Sloan Digital Sky Survey data release 7,” Mon. Not. R. Astron. Soc. 421, 926–934 (2012).

    Article  ADS  Google Scholar 

  27. M. Boylan-Kolchin et al., “Resolving cosmic structure formation with the Millennium-II simulation,” Mon. Not. R. Astron. Soc. 398, 1150–1164 (2009).

    Article  ADS  Google Scholar 

  28. S. A. Gregory and L. A. Thompson, “The Coma/A1367 supercluster and its environs,” Astroph. J. 222, 784–799 (1978).

    Article  ADS  Google Scholar 

  29. P. Sundell, E. Mortsell, and I. Vilja, “Can a void mimic the Λ in ΛCDM?,” JCAP 2015.08, 037 (2015).

    Google Scholar 

  30. K.-i. Maeda and H. Sato, “Expansion of a thin shell around a void in expanding universe,” Progr. Theor. Phys. 70, 772–782 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. K.-i. Maeda and H. Sato, “Expansion of a thin shell around a void in expanding Universe. II,” Progr. Theor. Phys. 70, 1276–1282 (1983).

    Article  ADS  MATH  Google Scholar 

  32. I. Etherington, “On the definition of distance in general relativity,” Philos. Mag. Ser. VII, 15, 761–773 (1933).

    Article  ADS  MATH  Google Scholar 

  33. G. F. R. Ellis, “On the definition of distance in general relativity,” I. M. H. Etherington (Philos. Mag. ser. 7, vol. 15, 761 (1933)), Gen. Rel. Grav. 39, 1047–1052 (2006).

    Google Scholar 

  34. V. Springel et al., “Simulating the joint evolution of quasars, galaxies and their large-scale distribution,” Nature 435, 629–636 (2005); astro-ph/0504097.

    Article  ADS  Google Scholar 

  35. M. U. Subba Rao and A. S. Szalay, “Statistics of pencil beams in Voronoi foams,” Astroph. J. 391, 483–493 (1992).

    Article  ADS  Google Scholar 

  36. R. B. Tully et al., “The Laniakea supercluster of galaxies,” Nature 513 (7516), 71–73 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boldizsar Balazs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balazs, B., Bene, G. Simplified Model of Voids Able to Mimic Accelerating Expansion at High z without Dark Energy. Gravit. Cosmol. 24, 331–336 (2018). https://doi.org/10.1134/S0202289318040035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289318040035

Navigation