Skip to main content
Log in

Analysis of Half-Spin Particle Motion in Kerr–Newman Field by Means of Effective Potentials in Second-Order Equations

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The self-conjugate Dirac Hamiltonian is obtained in the Kerr–Newman field. A transition is implemented to a Schrödinger-type relativistic equation. For the case where the angular and radial variables are not separated, the method of obtaining effective potentials is generalized. Effective potentials have isolated singularities on the event horizons as well as at certain parameters of the Kerr–Newman field and of the fermion in the neighborhoods of some values of the radial coordinate. For the extreme Kerr–Newman field, the impossibility of existence of stationary bound states of half-spin particles is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, I. Sitzber. Preuss. Akad. Wiss. 11–12, 105 (1932).

    Google Scholar 

  2. G. C. McVittie, Mon. Not. Roy. Astron. Soc. 92, 868 (1932).

    Article  ADS  Google Scholar 

  3. D. R. Brill and J. M. Cohen, J. Math. Phys. 7, 238 (1966).

    Article  ADS  Google Scholar 

  4. S. Chandrasekhar, Proc. Roy. Soc. London A 349, 571 (1976).

    Article  ADS  Google Scholar 

  5. S. Chandrasekhar, Proc. Roy. Soc. London A 350, 565 (1976).

    Article  Google Scholar 

  6. D. Page, Phys. Rev. D 14, 1509 (1976).

    Article  ADS  Google Scholar 

  7. F. Belgiorno, Phys. Rev. D 58, 084017 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. M. Cohen and R. T. Powers, Comm. Math. Phys. 86, 69 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Zecca, Nuovo Cim. B 113, 1309 (1998).

    ADS  Google Scholar 

  10. F. Belgiorno and M. Martellini, Phys. Lett. B 453, 17 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Belgiorno and S. L. Cacciatori, J. Math. Phys. 51, 033517 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Winklmeier and O. Yamada, J. Phys.A 42, 295204 (15) (2009).

    Article  MathSciNet  Google Scholar 

  13. M. Winklmeier and O. Yamada, J. Math. Phys. 47, 102503 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Batic, H. Schmid, and M. Winklmeier, J. Math. Phys. 46, 012504 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Comm. Pure Appl.Math. 53, 902 (2000).

    Article  MathSciNet  Google Scholar 

  16. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Comm. Pure Appl.Math. 53, 1201 (2000).

    Article  MathSciNet  Google Scholar 

  17. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Comm. Math. Phys. 230, 201 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Adv. Theor. Math. Phys. 7, 25 (2003).

    Article  MathSciNet  Google Scholar 

  19. F. Melnyk, Class. Quantum Grav. 17, 2281 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Caceres and C. Doran, Phys. Rev. A 72, 022103 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. M. V. Gorbatenko and V. P. Neznamov. Phys. Rev. D 82, 104056 (2010).

    Article  ADS  Google Scholar 

  22. M. V. Gorbatenko and V. P. Neznamov. Phys. Rev. D 83, 105002 (2011).

    Article  ADS  Google Scholar 

  23. M. V. Gorbatenko and V. P. Neznamov. J.Mod. Phys. 6, 303 (2015).

    Article  Google Scholar 

  24. M. V. Gorbatenko and V. P. Neznamov. Ann. Phys. (Berlin) 526, 491 (2014).

    Article  ADS  Google Scholar 

  25. V. P. Neznamov and I. I. Safronov, Int. J. Mod. Phys. D 25, 1650091 (2016); arXiv: 1605/07450.

    Article  ADS  Google Scholar 

  26. D. Batic and H. Schmid, Prog. Theor. Phys. 116, 517 (2006).

    Article  ADS  Google Scholar 

  27. D. Batic and H. Schmid, Revista Colomb. Mat. 42, 183 (2008).

    Google Scholar 

  28. K. G. Suffern, E. D. Fackerell, and C.M. Cosgrove, J. Math. Phys. 24, 1350 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. S. Tahvildar-Zadeh, J. Math. Phys. 56, 042501 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  30. M. K.-H. Kiessling and A. S. Tahvildar-Zadeh, J. Math. Phys. 56, 042303 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  31. K. M. Case, Phys. Rev. 80, 797 (1950).

    Article  ADS  Google Scholar 

  32. Ya. B. Zeldovich and V. S. Popov, Uspekhi Fiz. Nauk 105, issue 3 (1971).

    Google Scholar 

  33. V. P. Neznamov. VANT, ser. Theoretical and applied physics, issue 1, p. 33 (2016).

    Google Scholar 

  34. M. V. Gorbatenko, V. P. Neznamov, and E. Yu. Popov, J. Physi. Conf. Series 678, 012037 (2016); arXiv: 1511.05058.

    Article  Google Scholar 

  35. M. V. Gorbatenko, V. P. Neznamov, E. Yu. Popov, and I. I. Safronov, J. Phys. Conf. Series 678, 012036 (2016); arXiv: 1511.05482. DOI:10.1088/1742-6596/678/1/012036

    Article  Google Scholar 

  36. V. P. Neznamov and V. E. Shemarulin, VANT, ser. Theoretical and applied physics, issue 3, p. 3 (2016).

    Google Scholar 

  37. V. P. Neznamov and V. E. Shemarulin, Grav. Cosmol. 23 149 (2017).

    Google Scholar 

  38. H. Quevedo, Int. J. Mod. Phys. D 20, 1779 (2011).

    Article  ADS  Google Scholar 

  39. C. M. Bender, D. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 2704041 (2002)

    Article  Google Scholar 

  40. C. M. Bender, D. Brody, and H. F. Jones, Phys. Rev. D 70, 025001 (2004).

    Article  ADS  Google Scholar 

  41. A. Mostafazadeh, J. Math Phys. 43, 205 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Mostafazadeh, J. Math Phys. 43, 2814 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Mostafazadeh, J. Math Phys. 43, 3944 (2002); arXiv: 0810.5643.

    Article  ADS  MathSciNet  Google Scholar 

  44. B. Bagchi and A. Fring, Phys. Lett. A 373, 4307 (2009); arXiv: 0907.5354.

    Article  ADS  MathSciNet  Google Scholar 

  45. M. V. Gorbatenko and V. P. Neznamov, Ann. Phys. (Berlin) 526, 195 (2014).

    Article  ADS  Google Scholar 

  46. L. Parker, Phys. Rev. D 22, 1922 (1980).

    Article  ADS  Google Scholar 

  47. A. Lasenby, C. Doran, J. Pritchard, A. Caceres, and S. Dolan, Phys. Rev. D 72, 105014 (2005).

    Article  ADS  Google Scholar 

  48. D. R. Brill and J. A. Wheeler, Rev.Mod. Phys. 29, 465 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  49. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950)

    Article  ADS  Google Scholar 

  50. E. Eriksen, Phys. Rev. 111, 1011 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  51. V. P. Neznamov, Part. Nucl. 37, 86 (2006)

    Article  Google Scholar 

  52. V. P. Neznamov and A. J. Silenko, J. Math. Phys. 50, 122302 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  53. A. J. Silenko, Theor. Math. Phys. 176, 987 (2013)

    Article  MathSciNet  Google Scholar 

  54. A. J. Silenko, Phys. Rev. A 91, 022103 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  55. A. J. Silenko, Phys. Rev. A 93, 022108 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  56. A. J. Silenko, Phys. Rev. A 94, 032104 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  57. J. Dittrich and P. Exner, J. Math. Phys 26, 2000 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  58. R. Penrose, Rivista del Nuovo Cimento, Serie I, 1, Numero Speciale: 252 (1969).

    Google Scholar 

  59. G. T. Horowitz and D. Marolf, Phys. Rev. D 52, 5670 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  60. H. Schmid. Math. Nachrichten, 274–275, 117 (2004); math-ph/0207039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Neznamov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neznamov, V.P., Shemarulin, V.E. Analysis of Half-Spin Particle Motion in Kerr–Newman Field by Means of Effective Potentials in Second-Order Equations. Gravit. Cosmol. 24, 129–138 (2018). https://doi.org/10.1134/S0202289318020111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289318020111

Navigation