Skip to main content
Log in

Cosmological acceleration from a scalar field and classical and quantum gravitational waves (Inflation and dark energy)

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We show that, on the average, a homogeneous and isotropic scalar field and, on the average, homogeneous and isotropic ensembles of classical and quantum gravitational waves generate the de Sitter expansion of empty (with no matter) space-time. At the start and by the end of its cosmological evolution, the Universe is empty. The contemporary Universe is about 70% empty, so the effect of cosmological acceleration should be very noticeable. One can assume that itmanifests itself as dark energy. At the start of the cosmological evolution, before the firstmatter was born, the Universe was also empty. The cosmological acceleration of such empty space-time can manifests itself as inflation. To get the de Sitter accelerated expansion of empty space-time under influence of scalar fields and classical and quantum gravitational waves, one needs to make a mandatory Wick rotation, i.e., one needs to make a transition to Euclidean space of imaginary time. One can assume that the very existence of inflation and dark energy could be considered as a possible observable evidence for the fact that time by its nature could be a complex value which manifests itself precisely at the start and by the end of the evolution of the Universe, i.e., in those periods when the Universe is empty (or nearly empty).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  2. A. D. Linde, Phys. Lett. B 108, 389 (1982).

    Article  ADS  Google Scholar 

  3. A. Albrecht and P. Steinhardt, Phys. Rev. Lett 48, 1220 (1982).

    Article  ADS  Google Scholar 

  4. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  5. S. Perlmutter et al., Ap. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  6. S. Weinberg, Cosmology (Oxford Univ. Press, 2008).

    MATH  Google Scholar 

  7. P. Ratra and L. Peebles, Phys. Rev. D 37, 340 (1988); P. Ratra and L. Peebles, Rev. Mod. Phys. 75, 559 (2003).

    Article  ADS  Google Scholar 

  8. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  9. L. Marochnik and D. Usikov, Grav. Cosmol. 21, 118 (2015).

    Article  ADS  Google Scholar 

  10. L. Marochnik, D. Usikov, and G. Vereshkov, Found. Phys. 38, 546 (2008).

    Article  ADS  Google Scholar 

  11. L. Marochnik, Grav. Cosmol. 22, 10 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. E. Kolb and M. Turner, The Early Universe (Frontiers in Physics, Addison-Wesley, 1990).

    MATH  Google Scholar 

  13. A. Guth, in Pritzker Symposium on the Status of Inflationary Cosmology, 1999; astro-ph/0002188.

    Google Scholar 

  14. A. Linde, J. Phys. Conf. Ser. 24, 151 (2005).

    Article  Google Scholar 

  15. A. Linde, New Astronomy Reviews 49, 35 (2005).

    Article  ADS  Google Scholar 

  16. A. Linde, Phys. Lett. B 129, 177 (1983).

    Article  ADS  Google Scholar 

  17. T. S. Bunch and P. C. W. Davies, Proc. R. Soc. London A 360, 117 (1978).

    Article  ADS  Google Scholar 

  18. A. Starobinsky, Pis’ma JETP 30, 719 (1979); JETP Lett. 30, 682 (1980).

    ADS  Google Scholar 

  19. L. R. W. Abramo, R. Brandenberger, and V. Mukhanov, Phys. Rev. D 56, 3248 (1997).

    Article  ADS  Google Scholar 

  20. A. Ishibashi and R. Wald, Class. Quantum Grav. 23, 235 (2006).

    Article  ADS  Google Scholar 

  21. L. Marochnik, D. Usikov, and G. Vereshkov, J. Math. Phys. 4, 48 (2013); arXiv: 0811.4484.

    Google Scholar 

  22. L. Marochnik, Grav. Cosmol. 19, 178 (2013); arXiv: 1306.6172.

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Rajaraman, Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland, Amsterdam, 1982).

    MATH  Google Scholar 

  24. M. A. Shifman, Ed., Instantons in Gauge Theories (World Scientific, Singapore, 1994).

    Google Scholar 

  25. N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer, Springer, 1990).

    Book  MATH  Google Scholar 

  26. G. W. Gibbons and S. W. Hawking, Eds., Euclidean Quantum Gravity (World Scientific, Singapore, 1993).

    MATH  Google Scholar 

  27. V. A. Rubakov and P. G. Tinyakov, Phys. Lett. B 214, 334 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Esposito, Int. J. Geom. Meth. Mod. Phys. 2, 675 (2005); arXiv: hep-th/0504089.

    Article  Google Scholar 

  29. B. J. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  30. S. W. Hawking, The Universe in a Nutshell (Bantam Books, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Marochnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marochnik, L. Cosmological acceleration from a scalar field and classical and quantum gravitational waves (Inflation and dark energy). Gravit. Cosmol. 23, 201–207 (2017). https://doi.org/10.1134/S0202289317030082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289317030082

Navigation