Skip to main content
Log in

General relativity and the standard model in scale-invariant variables

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

General Relativity and Standard Model are formulated in terms of scale-invariant variables where the initial data are integrals of motion. In this case, the Hubble law can be explained by a cosmological evolution of particle masses. Supernovae type Ia data and the CMB energy budget in the model are in agreement with the dominance of a scalar field kinetic energy density and an intensive cosmological creation of primordialW, Z, and Higgs bosons from vacuum. Some arguments are discussed testifying to that two-photon processes of primordial particle annihilation and decays form three peaks in the CMB power spectrum, and their values and positions = 220, 546, 800 are in agreement with the QED coupling constant,Weinberg’s angle, and the Higgs particle mass of about 118 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dunkley et al., arXiv:0803.0732; G. Hinshaw et al., arXiv:0803.0586.

  2. M. Giovannini, Int. J.Mod. Phys. D 14, 363 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. E.P. Wigner, Annals of Math. 40, 149 (1939); V. Bargmann, E. P. Wigner, Proc. Nat. Acad. Sci. USA 34, 211 (1948).

    Article  MathSciNet  Google Scholar 

  4. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co, Evanston, Ill., Elmsford, N.Y, 1961).

  5. N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Moscow, Nauka, 1987, in Russian).

    Google Scholar 

  6. V. I. Ogievetsky and I. V. Polubarinov, Ann. Phys. (N.Y.) 25, 358 (1963); Nouvo Cim. 23, 1273 (1962); Zh. Eksp. Teor. Fiz. 45. 237, 709, 966 (1962); Zh. Eksp. Teor. Fiz. 46, 1048 (1964).

    Article  ADS  Google Scholar 

  7. R. Utiyama, Phys. Rev. 101, 1597 (1956); T.W. B. Kibble, J. Math. Phys. 2, 212 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. V.A. Fock, Zs. f. Phys. 57, 261 (1929).

    Article  ADS  Google Scholar 

  9. P. A. M. Dirac, Proc. Roy. Soc. A 246, 333 (1958); Phys. Rev. 114, 924 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R. Arnowitt, S. Deser, and C. W. Misner, The Dynamics of General Relativity, in: L. Witten, Gravitation: An Introduction to Current Research (Wiley, 1962), p. 227.

  11. A. F. Zakharov, V. A. Zinchuk, and V. N. Pervushin, Physics of Particles and Nuclei 37, 104 (2006).

    Article  ADS  Google Scholar 

  12. B. M. Barbashov et al., Phys. Lett. B 633, 458 (2006) [hep-th/0501242]; Int. J. Mod. Phys. A 21, 5957 (2006); Int. J.Geom.Meth.Mod. Phys. 4, 171 (2007).

    Article  ADS  Google Scholar 

  13. R. Illge and R. Schimming, Ann. der Physik 8, 319 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. J. A. Wheeler, in: Batelle Rencontres, 1967, Lectures in Mathematics and Physics, Ed. by C. DeWitt and J. A. Wheeler (New York, 1968); B. S. DeWitt, Phys. Rev. 160, 1113 (1967).

  15. V. N. Pervushin and V. A. Zinchuk, Physics of Atomic Nuclei 70, 590 (2007).

    Article  ADS  Google Scholar 

  16. C. Misner, Phys. Rev. 186, 1319 (1969).

    Article  MATH  ADS  Google Scholar 

  17. A. Lichnerowicz, Journ.Math. Pures and Appl. B 37, 23 (1944); J. W. York (Jr.), Phys. Rev. Lett. 26, 1658 (1971); K. Kuchar, J.Math. Phys. 13, 768 (1972).

    Google Scholar 

  18. A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. D. Riess, L.-G. Strolger, J. Tonry et al., Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  19. D. Behnke et al., Phys. Lett. B 530, 20 (2002).

    Article  MATH  ADS  Google Scholar 

  20. D. Behnke, Conformal Cosmology Approach to the Problem of Dark Matter, PhD Thesis, Rostock Report MPG-VT-UR 248/04 (2004).

  21. A. F. Zakharov, A. A. Zakharova, and V. N. Pervushin, astro-ph/0611639.

  22. A. M. Khvedelidze, V. V. Papoyan, and V. N. Pervushin, Phys. Rev. D 51, 5654 (1995).

    Article  ADS  Google Scholar 

  23. F. Hoyle, A New Model for the Expanding Universe, MNRAS 108, 372 (1948); ADS Bibliographic Code:1948 MNRAS.108.372H; J. V. Narlikar, R. G. Vishwakarma, and G. Burbidge, Publ. Astron. Soc. Pac. 114, 1092 (2002).

    MATH  Google Scholar 

  24. P. A. M. Dirac, Proc. Roy. Soc. Lond. A 114, 243 (1927); Can. J. Phys. 33, 650 (1955).

    Article  ADS  Google Scholar 

  25. P. A. M. Dirac, Proc. R. Soc. Lond. A 333, 403 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. B. Borisov and V. I. Ogievetsky, Teor. Mat. Fiz. 21, 329 (1974).

    Google Scholar 

  27. M. Pawlowski and R. Raczka, Found. Phys. 24, 1305 (1994); M. Pawlowski et al., Phys. Lett. B 418, 263 (1998); R. Kallosh et al., Class. Quantum Grav. 17,4269 (2000).

    Article  ADS  Google Scholar 

  28. M. Piatek, V. N. Pervushin, and A.B. Arbuzov,Fizika B (Zagreb) 17, 189 (2008).

    ADS  Google Scholar 

  29. A. L. Zelmanov, Dokl. AN SSSR 107, 315 (1956); Dokl. AN SSSR 209, 822 (1973); Yu. S. Vladimirov, Reference Frames in Theory of Gravitation (Moscow, Energoizdat, 1982, in Russian).

    MathSciNet  Google Scholar 

  30. A. Einstein, Sitzungsber. d. Berl. Akad. 1, 147 (1917).

    Google Scholar 

  31. V. Pervushin, Acta Physica Slovakia 53, 237 (2003); D. B. Blaschke et al., Phys. Atom. Nucl. 67, 1050 (2004); Phys. Atom. Nucl. 68, 1090 (2005).

    Google Scholar 

  32. N. A. Chernikov and E. A. Tagirov, Ann. Inst. H. Poincaré 9, 109 (1968); E. A. Tagirov and N. A. Chernikov, preprint P2-3777, JINR, 1967; K. A. Bronnikov and E. A. Tagirov, preprint P2-4151, JINR, 1968; Grav. Cosmol. 10, 249 (2004).

    MATH  MathSciNet  Google Scholar 

  33. L. Parker, Phys. Rev. 183, 1057 (1969).

    Article  MATH  ADS  Google Scholar 

  34. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields (Energoatomizdat, Moscow, 1988); A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Google Scholar 

  35. V. N. Pervushin and V. I. Smirichinski, J. Phys. A 32, 6191 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. A. B. Arbuzov et al., arXiv:0705.4672 [hep-ph].

  37. V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  38. R. H. Cyburt et al., Phys. Lett. B 567, 227 (2003); K. A.Olive, G. Steigman, and T. P.Walker, Phys. Rep. 333, 389 (2000).

    Article  ADS  Google Scholar 

  39. N. A. Chernikov, Phys. Lett. 5, 115 (1963); Acta. Phys. Pol. 23, 629 (1963); Acta. Phys. Pol. 26, 1069 (1964); Acta. Phys. Pol. 27, 465 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  40. Ingo Muller, A History of Thermodynamics: The Doctrine of Energy and Entropy (Springer Published 2007/01).

  41. S. A. Smolyansky et al., Proc. of the Conf. “Progress in Nonequilibrium Green’s Functions”, Dresden, Germany, Aug. 19–23, 2002, Eds. by M. Bonitz and D. Semkat (World Scientific, New Jersey, London, Singapur, Hong Kong).

  42. J. Bernstein, Kinetic Theory in the Expanding Universe (CUP, 1985).

  43. L. B. Okun, Leptons and Quarks (Nauka, Moscow, 1981; North-Holland, Amsterdam, 1982).

    Google Scholar 

  44. A. B. Arbuzov et al., arXiv:0802.3427 [hep-ph], submitted to Yadernaya Fizika.

  45. Yu. G. Ignatyev, Russ. Phys. J. 29, 104 (1986); Grav. Cosmol. 13, 31 (2007); Yu.G. Ignatyev and D. Yu. Ignatyev, Grav. Cosmol. 13, 101 (2007).

    Google Scholar 

  46. W. J. Cocke and W. G. Tifft, Astrophys. J. 368, 383 (1991); K. Bajan, P. Flin,W. Godłowski,V. Pervushin, and A. Zorin, Spacetime & Substance 4, 225 (2003).

    Article  ADS  Google Scholar 

  47. M.E. Shaposhnikov, Nucl. Phys. B 287, 757 (1987); V. A. Matveev et al., Usp. Fiz. Nauk 156, 253 (1988); V. A. Rubakov and M. E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Pervushin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbuzov, A.B., Barbashov, B.M., Borowiec, A. et al. General relativity and the standard model in scale-invariant variables. Gravit. Cosmol. 15, 199–212 (2009). https://doi.org/10.1134/S0202289309030025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289309030025

PACS numbers

Navigation