Skip to main content
Log in

Hydrological simulation of river basins at different spatial scales: 1. Generalization and averaging algorithms

  • Water Resources and the Regime of Water Bodies
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

ECOlogical Model for Applied Geophysics have been used as a sample to develop algorithms for generalizing the description and parameters of moisture exchange in physically based runoff formation models when the spatial scale of the model is changed; the algorithms are based on the use of statistical distributions and various procedures of spatial averaging of land surface parameters depending on the algorithms used to calculate individual hydrological processes. The proposed algorithms make it possible to give a physical interpretation of some aggregated effective parameters of conceptual lumped-parameter hydrological models and, in some cases, to evaluate the errors caused by the spatial averaging of heterogeneities in land surface characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradov, Yu.B., Matematicheskoe modelirovanie protsessov formirovaniya stoka (Mathematical Simulation of Runoff Formation Processes), Leningrad: Gidrometeoizdat, 1988.

    Google Scholar 

  2. Vinogradov, Yu.B. and Vinogradova, T.A., Matematicheskoe modelirovanie v gidrologii (Mathematical Simulation in Hydrology), Moscow: Akademiya, 2010.

    Google Scholar 

  3. Gel’fan, A.N., Dinamiko-stokhasticheskoe modelirovanie formirovaniya talogo stoka (Dynamic–Stochastic Simulation of Snowmelt Water Runoff), Moscow: Nauka, 2007.

    Google Scholar 

  4. Gorokhovskii, V.M., Effektivnye parametry gidrogeologicheskikh modelei (Effective Parameters of Hydrological Models), Moscow: GIDEK, 2013.

    Google Scholar 

  5. Gusev, E.M. and Nasonova, O.N., Modelirovanie teploi vlagoobmena poverkhnosti sushi s atmosferoi (Simulation of Heat and Moisture Exchange between Land Surface and the Atmosphere), Moscow: Nauka, 2010.

    Google Scholar 

  6. Danilov-Danil’yan, V.I., Gel’fan, A.N., Motovilov, Yu.G., and Kalugin, A.S., Disastrous flood of 2013 in the Amur Basin: genesis, recurrence assessment, simulation results, Water Resour., 2014, vol. 41, no. 2, pp. 115–125.

    Article  Google Scholar 

  7. Kuchment, L.S., Modeli protsessov formirovaniya rechnogo stoka (Models of River Runoff Formation Processes), Leningrad: Gidrometeoizdat, 1980.

    Google Scholar 

  8. Kuchment, L.S., Rechnoi stok (genezis, modelirovanie, predvychislenie) (River Runoff: Genesis, Simulation, Precomputation), Moscow: IVP RAN, 2008.

    Google Scholar 

  9. Kuchment, L.S., Demidov, V.N., and Motovilov, Yu.G., Formirovanie rechnogo stoka (fizikomatematicheskie modeli) (River Runoff Formation: Physicomathematical Models), Moscow: Nauka, 1983.

    Google Scholar 

  10. Motovilov, Yu.G., Modeling snow cover and snow melting, in Modelirovanie gidrologicheskogo tsikla rechnykh vodosborov (Simulating the Hydrological Cycle of River Drainage Basins), Moscow: RAN, 1993, pp. 9–37.

    Google Scholar 

  11. Motovilov, Yu.G., The state and perspectives of hydrological simulation of river basins in Russia based on ECOMAG complex, in Fundamental’nye problemy vody i vodnykh resursov. Materialy 3-i vseros. konf. s mezhdunar. uchastiem (Basic Problems of Water and Water Resources, Materials of 3rd All-Russia Conf. with Intern. Participation), Barnaul, 2010, pp. 530–532.

    Google Scholar 

  12. Rumyantsev, V.A., Kondrat’ev, S.A., Kapotova, N.I., and Livanova, H.A., Opyt razrabotki i primeneniya matematicheskikh modelei basseinov malykh rek (Experience in the Development and Application of Mathematical Models of Small-River Basins), Leningrad: Gidrometeoizdat, 1985.

    Google Scholar 

  13. Distributed hydrological modeling, Water Sci. Technol. Libr., Abbott, M.B., and Refsgaard, J.C., Eds., Kluwer Acad. Publ., 1996, vol. 22.

  14. Beven, K., Changing ideas in hydrology—the case of physically-based models, J. Hydrol., 1989, vol. 105, pp. 157–172.

    Article  Google Scholar 

  15. Bloschl, G. and Sivapalan, M., Scale issues in hydrological modeling: a review, Hydrol. Proc., 1995, vol. 9, pp. 251–290.

    Article  Google Scholar 

  16. Gelfan, A., Semenov, V.A., Gusev, E., Motovilov, Y., Nasonova, O., Krylenko, I., and Kovalev, E., Largebasin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability, Hydrol. Earth Syst. Sci., 2015, vol. 19, pp. 2737–2754.

    Article  Google Scholar 

  17. Gottschalk, L., Batcharova, E., Gryning, S.-E., Lindroth, A., Melas, D., Motovilov, Yu., Frech, M., Heininheimo, M., Samuelsson, P., Grelle, A., and Persson, T., Scale aggregation—comparison of flux estimates from NOPEX, Agric. For. Meteorol., 1999, vol. 98, no. 99, pp. 103–119.

    Article  Google Scholar 

  18. Gottschalk, L., Beldring, S., Engeland, K., Tallaksen, L., Salthun, N.R., Kolberg, S., and Motovilov, Yu., Regional/macroscale hydrological modeling: a Scandinavian experience, Hydrol. Sci. J., 2001, vol. 46, no. 6, pp. 963–982.

    Article  Google Scholar 

  19. Motovilov, Yu.G. and Gelfan, A.N., Assessing runoff sensitivity to climate change in the Arctic basin: empirical and modelling approaches, IAHS Publ., 2013, vol. 360, pp. 105–112.

    Google Scholar 

  20. Motovilov, Yu.G., Gottschalk, L., Engeland, K., and Belokurov, A., ECOMAG—regional model of hydrological cycle. Application to the NOPEX region, Department of Geophysics. University of Oslo. Inst. Rep. Ser., 1999, no. 105.

    Google Scholar 

  21. Motovilov, Yu.G., Gottschalk, L., Engeland, K., and Rodhe, A., Validation of a distributed hydrological model against spatial observation, Agric. For. Meteor., 1999, vol. 98, pp. 257–277.

    Article  Google Scholar 

  22. Reggiani, P. and Schellekens, J., Modelling of hydrological responses: the representative elementary watershed as an alternative blueprint for watershed modeling, Hydr. Proc., 2003, vol. 17, pp. 3785–3789.

    Article  Google Scholar 

  23. Semenova, O. and Beven, K., Barriers to progress in distributed hydrological modeling, Hydrol. Process., 2015, vol. 29, pp. 2074–2078.

    Article  Google Scholar 

  24. Wood, E.F., Sivapalan, M., Beven, K.J., and Band, L., Effects of spatial variability and scale with implications to hydrological modeling, J. Hydrol., 1988, vol. 102, pp. 29–47.

    Article  Google Scholar 

  25. Motovilov, Yu.G., Simulation of soil frost depth and effect on runoff, Nordic Hydrol., 1989, vol. 20, pp. 9–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Motovilov.

Additional information

Original Russian Text © Yu.G. Motovilov, 2016, published in Vodnye Resursy, 2016, Vol. 43, No. 3, pp. 243–253.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motovilov, Y.G. Hydrological simulation of river basins at different spatial scales: 1. Generalization and averaging algorithms. Water Resour 43, 429–437 (2016). https://doi.org/10.1134/S0097807816030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807816030118

Keywords

Navigation