Skip to main content
Log in

Modeling the biodegradation of multicomponent organic matter in an aquatic environment: 2. Analysis of the structural organization of lignin

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

A vast body of literature data is used to analyze the modern concepts of the structural organization of lignin; consider the statistics of relationships and functional groups; identify the dominating relationships and groups; assess the masses and sizes of macromolecules and specific features of molecular-mass distribution; describe the characteristics of the fractal structure of macromolecules. The results are used to formulate the major structural regularities which are of importance for the development of lignin degradation model in the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azarov, V.I., Burov, A.V., and Obolenskaya, A.V., Khimiya drevesiny i sinteticheskikh polimerov (Chemistry of Wood and Synthetic Polymers), St. Petersburg: LTA, 1999.

    Google Scholar 

  2. Afanas’ev, N.I., Macromolecule Structure in Solutions and on Interphase Boundaries and the Surfactant Characteristics of Lignosufonates, Extended Abstract of Doctoral (Chem.) Dissertation, St. Petersburg: St.-Peterburg State Engineering University of Plant Polymers, 1996.

    Google Scholar 

  3. Browns, F.E., and Browns, D.A., Khimiya lignina (The Chemistry of Lignin), Moscow: Lesnaya prom., 1964.

    Google Scholar 

  4. Varyukhin, S.E. and Irzhak, V.I., On the Initiation Efficiency in Radical Polymerization, Dokl. Akad. Nauk, 2004, vol. 397, no. 5 [Dokl. (Engl. Transl.), vol. 397, no. 5].

  5. Gravitis, Ya.A. and Ozol’-Kalnin, V.G., The Structure of Lignin as a Polymer: 2. Lignin Structure and Formation from the Viewpoint of the Branching Process Theory, Khim. Drev., 1977, no. 3.

  6. Grushnikov, O.P. and Elkin, V.V., Dostizheniya i problemy khimii lignina (Achievements and Problems in Lignin Chemistry), Moscow: Nauka, 1973.

    Google Scholar 

  7. Grushnikov, O.P. and Shorygina, N.N., The Heterogeneity of Natural Lignin, Usp. Khim., 1971, vol. 40, no. 8.

  8. Grushnikov, O.P. and Shorygina, N.N., Current Knowledge of Lignin Biosynthesis, Usp. Khim., 1972, vol. 41, no. 11.

  9. Dolgonosov, B.M., Nelineinaya dinamika ekologicheskikh i gidrologicheskikh protsessov (Nonlinear Dynamics of Ecological and Hydrological Processes), Moscow: Knizhnyi dom “Librokom”/URSS, 2009.

    Google Scholar 

  10. Karmanov, A.P., Lignin. Structural Organization and Self-Organization, Khim. Rastit. Syr’ya, 1999, no. 1.

  11. Karmanov, A.P., Samoorganizatsiya i strukturnaya organizatsiya lignina (Self-Organization and Structural Organization of Lignin), Yekaterinburg: Izd. UrO RAN, 2004.

    Google Scholar 

  12. Karmanov, A.P., Characteristic of Lignin of Cell Membranes, Vysokomol. Soedin., 2000, vol. 42, no. 7.

  13. Karmanov, A.P., Davydov, V.D., and Bogomolov, B.D., Current State of Heterogeneity Problem of Natural Lignin, Khim. Drev., 1982, no. 2.

  14. Karmanov, A.P. and Kuznetsov, S.P., Computer Modeling of the Growth of Fractal Macromolecules, in Problemy khimii drevesiny i lesokhimii (Problems in Wood Chemistry and Forest Chemistry), Syktyvkar, 1997, pp. 63–67.

  15. Karmanov, A.P. and Matveev, D.V., Concept of Self-Organized Criticality, Khim. Rastit. Syr’ya, 2001, no. 2.

  16. Karmanov, A.P. and Monakov, Yu.B., Formation of Spatially Periodic Structures in Dehydropolymer Synthesis, Khim. Drev., 1994, no. 1.

  17. Kokorevich, A.G., Gravitis, Ya.A., and Ozol’-Kalnin, V.G., Development of Scaling Approach in Studying the Supermolecular Structure of Lignin, Khim. Drev., 1989, no. 1.

  18. Kratkii spravochnik fiziko-khimicheskikh velichin (Concise Reference Book of Physicochemical Characteristics) Mishchenko, K.P. and Ravdelya, A.A., Eds., Leningrad: Khimiya, 1967.

    Google Scholar 

  19. Ligniny (struktura, svoistva i reaktsii) (Lignins: Structure, Properties, and Reactions), Sarkanen, K.V. and Lyudvig, K.Kh., Eds., Moscow: Lesnaya prom., 1975.

    Google Scholar 

  20. Mezhikovskii, S.M. and Irzhak, V.I., Khimicheskaya fizika otverzhdeniya oligomerov (Chemical Physics of Oligomer Hardening), Moscow: Nauka, 2008.

    Google Scholar 

  21. Nikitin, V.M., Khimiya drevesiny i tsellyulozy (Chemistry of Wood and Cellulose), Moscow: Lesnaya prom., 1978.

    Google Scholar 

  22. Ozol’-Kalnin, V.G., Kokorevich, A.G., and Gravitis, Ya.A., Modeling Finite-Size Lattice Clusters: Assessment of Reaction Capacity, Spatial Shape, and Topological Structure Vysokomol. Soedin., Ser. A., 1987, vol. 29, no. 5.

  23. Pen, V.R. and Pen, R.Z., Kinetika delignifikatsii drevesiny (Wood Delignification Kinetics), Krasnoyarsk: Sib-GTU, 1998.

    Google Scholar 

  24. Pen, V.R., Pen, R.Z., and Taraban’ko, V.E., Wood Delignification Kinetics: 7. Monte Carlo Modeling of Lignin Degradation, Khim. Rastit. Syr’ya, 1998, no. 3.

  25. Rabinovich, M.L., Bolobova, A.V., and Kondrashchenko, V.I., Teoreticheskie osnovy biotekhnologii drevesnykh kompozitov (Theoretical Principles of the Biotechnology of Wood Composite Materials), Moscow: Nauka, 2001.

    Google Scholar 

  26. Reznikov, V.M., Reaction Capacity of Lignin and Its Transformations in Wood Delignification Processes, Khim. Drev., 1977, no. 3.

  27. Repnikova, E.A, Aleshina, L.A., Glazkova, S.V., and Fofanov, A.D., Studying Lignin Structure, Khim. Rastit. Syr’ya, 2004, no. 1.

  28. Reshetnikova, I.A., Destruktsiya lignina ksilotrofnymi makromitsetami (Lignin Degradation by Xylotrophic Macromycetes), Moscow: Mosk. Gos. Univ., 1997.

    Google Scholar 

  29. Roldugin, V.I., Fractal Structures in Disperse Systems, Usp. Khim., 2003, vol. 72, no. 10.

  30. Rudakova, I.S., Studying the Aggregative and Sedimentation Stability of Sulfate Lignin Dispersions in Aquosystems, Extended Abstract of Cand. Sci. (Chem.) Dissertation, St. Petersburg: St.-Peterburg State Engineering University of Plant Polymers, 2007.

    Google Scholar 

  31. Rudakova, I.S., Molodkina, L.M., Chernoberezhskii, Yu.M., and Dyagileva, A.B., Studying the Dependence of Particle Size in Sulfate Lignin Aquatic Dispersion on pH by Track Membrane Filtration Method, Kolloidn. Zh., 2007, vol. 69, no. 5.

  32. Smirnov, B.M., Fizika fraktal’nykh klasterov (Physics of Fractal Clusters), Moscow: Nauka, 1991.

    Google Scholar 

  33. Suzdalev, I.P., Nanotekhnologiya: fizikokhimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: Kom Kniga/URSS, 2006.

    Google Scholar 

  34. Fengel’, D. and Vegener, G., Drevesina: khimiya, ul’trastruktura, reaktsii (Wood: Chemistry, Ultrastructure, Reactions), Moscow: Lesnaya prom., 1988.

    Google Scholar 

  35. Chernoberezhskii, Yu.M., Rudakova, I.S., and Lorentsson, A.V., Spectrophotometric and Flow-Ultramicroscopic Study of the Aggregative and Sedimentation Stability of Aquatic Dispersion of Sulfate Lignin within pH Interval 12.0 to 2.3, Kolloidn. Zh., 2007, vol. 69, no. 2.

  36. Shefer, D. and Kefer, K., The Structure of Random Silicates: Polymers, Colloids, and Porous Solid Bodies, in Fraktaly v fizike (Fractals in Physics), Moscow: Mir, 1988, pp. 62–71.

    Google Scholar 

  37. Shorygina, N.N., Reznikov, V.M., and Elkin, V.V., Reaktsionnaya sposobnost’ lignina (Reaction Capacity of Lignin), Moscow: Nauka, 1976.

    Google Scholar 

  38. Adler, E., Lignin Chemistry—Past, Present and Future, Wood Sci. Technol., 1977, vol. 11, no. 3, p. 169.

    Article  Google Scholar 

  39. Bak, P., Tang, C., and Wiesenfeld, K., Self-Organized Criticality, Phys. Rev. A., 1988, vol. 38, no. 1, p. 364.

    Article  Google Scholar 

  40. Bale, H.D. and Schmidt, P.W., Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties, Phys. Rev. Lett., 1984, vol. 53, no. 6, p. 596–599.

    Article  Google Scholar 

  41. Berry, R.S., Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms, Berlin: Springer, 1994.

    Google Scholar 

  42. Brunow, G., in Methods to Reveal the Structure of Lignin, Hofrichter, M.. and Steinbuchel, A., Eds., Berlin: Wiley-VCH, 2001, vol. 1, pp. 187–205.

    Google Scholar 

  43. Chen, T., Lamm, M.H., and Glotzer, S.C., Biomolecule-Directed Assembly of Nanoscale Building Blocks Studied Via Lattice Monte Carlo Simulation, J. Chem. Phys., 2004, vol. 121, no. 8, p. 3919–3929.

    Article  Google Scholar 

  44. Eriksson, K.-E.L., Blanchette, R.A., and Ander, P., Microbial and Enzymatic Degradation of Wood Components, Berlin: Springer, 1990.

    Google Scholar 

  45. Flaig, W., Effects of Microorganisms in the Transformation of Lignin to Humic Substances, Geochim. Cosmochim. Acta, 1964, vol. 28, nos. 10–11, p. 1523–1535.

    Article  Google Scholar 

  46. Flory, P.J., Principles of Polymer Chemistry, New York, 1953.

  47. Freudenberg, K. and Neish, A.C., Constitution and Biosynthesis of Lignin, Berlin, 1986.

  48. Gidh, A., Talreja, D., Vinzant, T. B., et al., Detailed Analysis of Modifications in Lignin after Treatment with Cultures Screened for Lignin Depolymerizing Agents, Appl. Biochem. Biotechnol. Mar., 2006, vol. 131, no. 1–3, pp. 829–843.

    Article  Google Scholar 

  49. Glasser, W.G. and Glasser, H.R., The Evolution of Lignin’s Chemical Structure by Experimental and Computer Simulation Techniques, Paperi ja Puu, 1981, vol. 63, p. 71.

    Google Scholar 

  50. Lai Yaun-Zong and Sarkanen K.V. Structural Variation in Dehydrogenation Polymers of Coniferyl Alcohol, Cellul. Chem. Technol.. 1975, vol. 9, no. 3. P. 239–245.

    Google Scholar 

  51. Nimz, H., Beech Lignin-Proposal of a Constitutional Scheme, Angew. Chem., Int. Ed., 1974, vol. 13, no. 5, p. 313–321.

    Article  Google Scholar 

  52. Pfeifer, P., and Avnir, D., Chemistry in Noninteger Dimensions Between Two and Three: I. Fractal Theory of Heterogeneous Surfaces, J. Chem. Phys., 1983, vol. 79, p. 3558–3565.

    Article  Google Scholar 

  53. Pfeifer, P., and Avnir, D., Chemistry in Noninteger Dimensions Between Two and ThreeL II. Fractal Surfaces of Adsorbents, J. Chem. Phys., 1983, vol. 79, p. 3566–3571.

    Article  Google Scholar 

  54. Sakakibara, M.A., Chemistry of Lignin, Wood and Cellulosic Chemistry, New York: Marcel Dekker, 1991, pp. 111–168.

    Google Scholar 

  55. Sjostrom, E., Wood Chemistry: Fundamentals and Applications, New York: Acad. Press, 1981.

    Google Scholar 

  56. Wilking, J.N., Graves, S.M., Chang, C.B., Meleson, K., Lin, M.Y., and Mason, T.G., Dense Cluster Formation during Aggregation and Gelation of Attractive Slippery Nanoemulsion Droplets, Phys. Rev. Lett., 2006, vol. 96, no. 1, p. 015501–015504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgonosov, B.M., Gubernatorova, T.N. Modeling the biodegradation of multicomponent organic matter in an aquatic environment: 2. Analysis of the structural organization of lignin. Water Resour 37, 320–331 (2010). https://doi.org/10.1134/S0097807810030073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807810030073

Keywords

Navigation