Skip to main content
Log in

Reproduction of Pechora runoff hydrographs with the help of a model of heat and water exchange between the land surface and the atmosphere (SWAP)

  • Hydrophysical Processes
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The potentialities of a procedure for calculating the Pechora River runoff from the pan-Arctic river basin are studied. The procedure is based on the use of a model describing heat and water exchange between the land surface and the atmosphere and two variants of input data sets relying on global databases on meteorological characteristics and land surface parameters and data of standard measurements of meteorological characteristics in combination with parameters of the land surface of the basin, taken from global databases. In both cases, use was made of the method for optimizing part of the most important model parameters, including both land surface parameters and correction factors for some meteorological elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appolov, B.A., Kalinin, G.P., and Komarov, V.D., Kurs gidrologicheskikh prognozov (Course of Hydrological Forecasts), Leningrad: Gidrometeoizdat, 1974.

    Google Scholar 

  2. Bogdanova, E.G., Golubev, V.S., Il’in, B.M., and Dragomilova, I.V., A New Model for the Correction of Measured Precipitation and Its Application in Polar Regions of Russia, Meteorol. Gidrol., 2002, no. 10, pp. 68–94.

  3. Bryazgin, N.N. and Dement’ev, A.A., Opasnye meteorologicheskie yavleniya v Rossiiskoi Arktike (Hazardous Meteorological Phenomena in Russian Arctic Region), St. Petersburg: Gidrometeoizdat, 1996.

    Google Scholar 

  4. Globus, A.M., Pochvenno-geograficheskoe obespechenie agroekologicheskikh matematicheskikh modelei (Soil-Geographical Supply of Agroecological Mathematical Models), Leningrad: Gidrometeoizdat, 1987.

    Google Scholar 

  5. Gusev, E.M. and Nasonova, O.N., Parametrization of Heat and Water Exchange on Land Surface-for Coupling Hydrologic and Climate Models, Vodn. Resur., 1998, vol. 25, no. 4, pp. 421–431 [Water Resour. (Engl. Transl.), vol. 25, no. 4, pp. 383–393].

    Google Scholar 

  6. Gusev, E.M. and Nasonova, O.N., Parametrization of Heat and Moisture Transfer in Groundwater-Soil-Plant (Snow) Cover-Atmosphere Systems for Territories with Continental Climate, Pochvovedenie, 2000, no. 6, pp. 733–748 [Eur. Soil Sci. (Engl. Transl.), no. 6, pp. 641–653].

  7. Gusev, E.M. and Nasonova, O.N., Parameterization of Heat and Moisture Exchange Processes in Boreal Forest Ecosystems, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 2001, vol. 37, no. 2, pp. 182–200.

    Google Scholar 

  8. Gusev, E.M. and Nasonova, O.N., Simulation of Heat and Water Exchange at the Land-Atmosphere Interface on a Local Scale for Permafrost Territories, Pochvovedenie, 2004, no. 9, pp. 1077–1092 [Eur. Soil Sci. (Engl. Transl.), no. 9, pp. 946–959].

  9. Gusev, E.M., Nasonova, O.N., and Dzhogan, L.Ya., The Simulation of Runoff from Small Catchments in the Permafrost Zone by the SWAP Model, Vodn. Resur., 2006, vol. 33, no. 2, pp. 133–145 [Water Resour. (Engl. Transl.), vol. 33, no. 2, pp. 115–126].

    Google Scholar 

  10. Gusev, E.M., Nasonova, O.N., and Kovalev, E.E., Modeling the Components of Heat and Water Balance for the Land Surface of the Globe, Vodn. Resur., 2006, vol. 33, no. 6, pp. 664–676 [Water Resour. (Engl. Transl.), vol. 33, no. 6, pp. 616–627].

    Google Scholar 

  11. Gusev, E.M., Nasonova, O.N., Dzhogan, L.Ya., and Kovalev, E.E., The Application of the Land Surface Model for Calculating River Runoff-in High Latitudesh, Vodn. Resur., 2008, vol. 35, no. 2, pp. 181–195 [Water Resour. (Engl. Transl.), vol. 35, no. 2, pp. 171–184].

    Google Scholar 

  12. Kuchment, L.S., Gel’fan, A.N., and Demidov, V.N., A Model of Runoff Formation on Watersheds in the Permafrost Zone: Case Study of the Upper Kolyma River, Vodn. Resur., 2000, vol. 27, no. 4, pp. 435–444 [Water Resour. (Engl. Transl.), vol. 27, no. 4, pp. 392–400].

    Google Scholar 

  13. Matheron, G., Osnovy prikladnoi geostatistiki (Fundamentals of Applied Geostatistics), Moscow: Mir, 1968.

    Google Scholar 

  14. Nasonova, O.N., Gusev, E.M., and Kovalev, E.E., Global Estimates of Components of Land Heat and Water Balance, Izv. Akad. Nauk, Ser. Geogr., 2008, no. 1, pp. 8–19.

  15. Arora, V.K., Assessment of Simulated Water Balance for Continental Scale River Basins in an AMIP 2 Simulation, J. Geophys. Res., 2001, vol. 106, no. D14, pp. 14 827–14 842.

    Article  Google Scholar 

  16. Barry, R.G and Serreze, M.C, Atmospheric Components of the Arctic Ocean Freshwater Balance and Their Interannual Variability, in The Freshwater Budget of the Arctic Ocean, Lewis, E.L., Jones, E.P., Lemke, P., et al., Eds., N.Y.: Springer, 2000, pp. 45–56.

    Google Scholar 

  17. Bogdanova, E.G., Ilyin, B.M., and Dragomilova, I.V., Application of a Comprehensive Bias Correction Model to Precipitation Measured at Russian North Pole Drifting Stations, J. Hydrometeorol, 2002, no. 3, pp. 700–713.

  18. Boone, A., Habets, F., Noilhan, J., et al., The Rhone-Aggregation Land Surface Scheme Intercomparison Project: An Overview, J. Clim., 2004, vol. 17, pp. 187–208.

    Article  Google Scholar 

  19. Bowling, L.C., Lettenmaier, D.P., Nijssen, B., et al., Simulation of High Latitude Hydrological Processes in the Torne-Kalix Basin: PILPS Phase 2(E): 1. Experiment Description and Summary Intercomparisons, Global Plan. Change, 2003, vol. 38, no. 1, pp. 1–30.

    Article  Google Scholar 

  20. Dirmeyer, P., Gao, X., and Oki, T., The Second Global Soil Wetness Project. Science and Implementation Plan, IGPO Publ. Series. Silver Spring: Intern. GEWEX Project Office, 2002, no. 37.

  21. Etchevers, P., Martin, E., Brown, R., et al., Validation of the Energy Budget of an Alpine Snowpack Simulated by Several Snow Models (SnowMIP Project), Annals of Glaciol., 2004, vol. 38, pp. 150–158.

    Article  Google Scholar 

  22. Gan, T.Y., Gusev, Ye., Burges, S.J., and Nasonova, O., Performance Comparison of a Complex, Physics-Based Land Surface Model and a Conceptual, Lumped-Parameter Hydrological Model at the BasinScale, IAHS Publ., 2006, no. 307, pp. 196–207.

  23. Goodison, B.E., Louie, P.Y.T., and Yang, D., WMO Solid Precipitation Intercomparison, Final Report. World Meteorol. Org., Instruments and Observing Methods Rep. 67, 1998, WMO/TD 872.

  24. Gusev, Ye.M. and Nasonova, O.N., The Land Surface Parameterization Scheme SWAP: Description and Partial Validation, Global Plan. Change, 1998, vol. 19, no. 1. pp. 63–86.

    Article  Google Scholar 

  25. Gusev, Ye.M. and Nasonova, O.N., The Simulation of Heat and Water Exchange at the Land-Atmosphere Interface for the Boreal Grassland by the Land-Surface Model SWAP, Hydrol. Proc., 2002, vol. 16, no. 10, pp. 1893–1919.

    Article  Google Scholar 

  26. Gusev, Ye.M. and Nasonova, O.N., The Simulation of Heat and Water Exchange in the Boreal Spruce Forest by the Land-Surface Model SWAP, J. Hydrology, 2003, vol. 280, nos. 1–4, pp. 162–191.

    Article  Google Scholar 

  27. Hall, F.G. and Meeson, B., Los S. et al. ISLSCP Initiative II, 2003. NASA DVD/CD-ROM.

  28. Kanae, S., Nishio, K., Oki, T., and Musiake, K., Hydrograph Estimations by Flow Routing Modeling from AGCM Output in Major Basins of the World, Ann. J. Hydraulic Eng., 1995, vol. 39, pp. 97–102.

    Google Scholar 

  29. Kanamitsu, M., Description of the NCEP Global Data Assimilation and Forecast System, Weather Forecasting, 1989, vol. 4, pp. 334–342.

    Article  Google Scholar 

  30. Kanamitsu, M., Alpert, J.C., Campana, K.A., et al., Recent Changes Implemented Into the Global Forecast System at NCEP, Weather Forecasting, 1991, vol. 6, pp. 0001–0012.

    Article  Google Scholar 

  31. Kanamitsu, M., Ebisuzaki, W., Woollen, J., et al., NCEP-DOE AMIP-II Reanalysis (R-2), Bull. Amer. Meteor. Soc., 2002, vol. 83, pp. 1631–1648.

    Article  Google Scholar 

  32. Liang, X., Lettenmaie, D.P., Wood, E.F., and Burges, S.J., A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for GSMs, J. Geophys. Res., 1994, vol. 99, no. (D7), pp. 14415–14428.

    Article  Google Scholar 

  33. Lohmann, D., Lettenmaier, D.P., Liang, X., et al., The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase-2(C) Red-Arkansas River Basin Experiment: 3. Spatial and Temporal Analysis of Water Fluxes, Global Plan. Change, 1998, vol. 19, nos. 1–4, pp. 161–179.

    Article  Google Scholar 

  34. Meeson, B.W., Corprew, F.E., McManus, J.M.P., et al., ISLSCP Initiative I-Global data sets for land-atmosphere models, 1995, vol. 1-5.

  35. Milly, P.C.D. and Dunne, K.A., Macroscale Water Fluxes. 1. Quantifying Errors in the Estimation of Basin Mean Precipitation, Water Resour. Res., 2002, vol. 38, no. 10, p. 1205.

    Article  Google Scholar 

  36. Nash, J.E. and Sutcliffe, J.V., River Flow Forecasting through Conceptual Models: 1 A Discussion of Principles, J. Hydrol., 1970, vol. 10, no. 3, pp. 282–290.

    Article  Google Scholar 

  37. New, M., Hulme, M., and Jones, P., Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901–96 Monthly Grids of Terrestrial Surface Climate, J. Clim., 2000, vol. 13, pp. 2217–2238.

    Article  Google Scholar 

  38. Nijssen, B., Bowling, L.C., Lettenmaier, D.P., et al., Simulation of High-Latitude Hydrological Processes in the Torne-Kalix Basin: PILPS Phase 2(E): 2. Comparison of Model Results with Observations, Global Plan. Change, 2003, vol. 38, no. 1, pp. 31–53.

    Article  Google Scholar 

  39. Oki, T., Validating the Runoff from LSP-SVAT Models Using a Global River Routing Network by One Degree Mesh, Proc. 13th Conf. on Hydrology, New York: Amer. Met. Soc, 1997, pp. 319–322.

    Google Scholar 

  40. Oki, T., Nishimur, T., and Dirmeyer, P., Assessment of Annual Runoff from Land Surface Models Using Total Runoff Integrating Pathways (TRIP), J. Meteorol. Soc. of Japan, 1999, vol. 77, p. 1B, pp. 235–255.

    Google Scholar 

  41. Oki, T. and Sud, Y.C., Design of Total Runoff Integrating Pathways (TRIP)-A Global River Channel Network, Earth Interactions, 1998, vol. 2, no. 1, pp. 1–37.

    Article  Google Scholar 

  42. Parrish, D.F. and Derber, J.C., The National Meteorological Center’s Spectral Statistical Interpolation Analysis System, Mon. Wea. Rev., 1992, vol. 120, pp. 1747–1763.

    Article  Google Scholar 

  43. Rawlins, M.A., Lammers, R.B., Frolking, S., et al., Simulating Pan-Arctic Runoff with a Macro-Scale Terrestrial Water Balance Model, Hydrol. Proc., 2003, vol. 17, pp. 2521–2539.

    Article  Google Scholar 

  44. Rudolf, B., Hauschild, H., Reuth, W., et al., Terrestrial Precipitation Analysis: Operational Method and Required Density of Point Measurements, NATO ASI Series I: Global Precipitation and Climate Change, Berlin: Springer, 1994, vol. 26, pp. 173–186.

    Google Scholar 

  45. Slater, A.G., Schlosser, C.A., Desborough, C.E., et al., The Representation of Snow in Land Surface Schemes: Results from PILPS 2(D), J. Hydrometeorol., 2001, vol. 2, pp. 7–25.

    Article  Google Scholar 

  46. Su, F., Adam, J.C., Bowling, L.C., et al., Streamflow Simulations of the Terrestrial Arctic Domain, J. Geophys. Res., 2005, vol. 110, no. D08112.

  47. Tian, X., Dai, A., Yang, D., et al., Effects of Precipitation-Bias Corrections on Surface Hydrology over Northern Latitudes, J. Geophys. Res., 2007, vol. 112, no. D14101.

  48. WMO Guide to Hydrological Practices. WMO-no.168, Genewa: WMO, 1994.

  49. Xia, Y., Calibration of LaD Model in the Northeast United States Using Observed Annual Streamflow, J. Hydrometeorol., 2007, vol. 8, pp. 1098–1110.

    Article  Google Scholar 

  50. Yang, D. and Ohata, T., A Bias-Corrected Siberian Regional Precipitation Climatology, J. Hydrometeorol., 2001, vol. 2, pp. 122–139.

    Article  Google Scholar 

  51. Zhao, M. and Dirmeyer, P., Production and Analysis of GSWP2 Near-Surface Meteorology Data Sets, Calveron: Center for Ocean-Land-Atmosphere Studies, 2003, no. 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.M. Gusev, O.N. Nasonova, L.Ya. Dzhogan, 2010, published in Vodnye Resursy, 2010, Vol. 37, No. 2, pp. 186–198.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, E.M., Nasonova, O.N. & Dzhogan, L.Y. Reproduction of Pechora runoff hydrographs with the help of a model of heat and water exchange between the land surface and the atmosphere (SWAP). Water Resour 37, 182–193 (2010). https://doi.org/10.1134/S0097807810020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807810020065

Keywords

Navigation