Skip to main content
Log in

Manipulation of states of a degenerate quantum system

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider the dynamics of an open three-level quantum degenerate system. One of the levels in this system is degenerate. The system interacts with three reservoirs (quantum fields) and a classical external field. We show that nondecaying so-called dark states are generated in this system. Since the interactions of the degenerate level with two different reservoirs are different (correspond to different spaces of dark states), we can describe excitation and manipulations for this kind of states (in particular, observation in spectroscopical experiments). Possible applications of this model in quantum optics, quantum computations, and quantum photosynthesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi and S. Kozyrev, “Lectures on quantum interacting particle systems, ” in Quantum Interacting Particle Systems (World Scientific, Singapore, 2002), QP-PQ: Quantum Probab. White Noise Anal. 14, pp. 1–195.

    Chapter  Google Scholar 

  2. L. Accardi, S. V. Kozyrev, and A. N. Pechen, “Coherent quantum control of Λ-atoms through the stochastic limit, ” in Quantum Information and Computing, Ed. by L. Accardi, M. Ohya, and N. Watanabe (World Scientific, Hackensack, NJ, 2006), QP-PQ: Quantum Probab. White Noise Anal. 19, pp. 1–17; arXiv: quant-ph/0403100.

    Chapter  Google Scholar 

  3. L. Accardi, Y. G. Lu, and I. Volovich, QuantumTheory and Its Stochastic Limit (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  4. I. Ya. Aref’eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic limit method and interference in quantum manyparticle systems, ” Teor. Mat. Fiz. 183 (3), 388–408 (2015) [Theor. Math. Phys. 183, 782–799 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Dong, D.-Z. Xu, J.-F. Huang, and C.-P. Sun, “Coherent excitation transfer via the dark-state channel in a bionic system, ” Light: Sci. Appl. 1, e2, doi: 10.1038/lsa.2012.2 (2012).

    Article  Google Scholar 

  6. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Manˇcal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, ” Nature 446, 782–786 (2007).

    Article  Google Scholar 

  7. M. Ferretti, R. Hendrikx, E. Romero, J. Southall, R. J. Cogdell, V. I. Novoderezhkin, G. D. Scholes, and R. van Grondelle, “Dark states in the light-harvesting complex 2 revealed by two-dimensional electronic spectroscopy, ” Sci. Rep. 6, 20834 (2016).

    Article  Google Scholar 

  8. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency, ” Phys. Rev. Lett. 84 (22), 5094–5097 (2000); arXiv: quant-ph/0001094.

    Article  Google Scholar 

  9. A. S. Holevo, QuantumSystems, Channels, Information: A Mathematical Introduction (de Gruyter, Berlin, 2012).

    Book  MATH  Google Scholar 

  10. A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory, ” Usp. Mat. Nauk 70 (2), 141–180 (2015) [Russ. Math. Surv. 70, 331–367 (2015)].

    MathSciNet  MATH  Google Scholar 

  11. M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer, ” J. Chem. Phys. 129 (17), 174106 (2008).

    Article  Google Scholar 

  12. M. Ohya and I. Volovich, MathematicalFoundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems (Springer, New York, 2011).

    MATH  Google Scholar 

  13. A. N. Pechen and N. B. Il’in, “Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 227–234 (2015) [Proc. Steklov Inst. Math. 289, 213–220 (2015)].

    MathSciNet  MATH  Google Scholar 

  14. A. Pechen and A. Trushechkin, “Measurement-assisted Landau–Zener transitions, ” Phys. Rev. A 91 (5), 052316 (2015).

    Article  Google Scholar 

  15. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting, ” Nature Chem. 3, 763–774 (2011).

    Article  Google Scholar 

  16. M. O. Scully and M. S. Zubairy, QuantumOptics (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  17. M. E. Shirokov, “On quantum zero-error capacity, ” Usp. Mat. Nauk 70 (1), 187–188 (2015) [Russ. Math. Surv. 70, 176–178 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  18. A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks, ” Europhys. Lett. 113 (3), 30005 (2016).

    Article  Google Scholar 

  19. G. Vattay and S. A. Kauffman, “Evolutionary design in biological quantum computing,” arXiv: 1311.4688 [condmat. dis-nn].

  20. I. V. Volovich, “Models of quantum computers and decoherence problem,” arXiv: quant-ph/9902055.

  21. I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light, ” Phys. Lett. A 380 (1–2), 56–58 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Volovich.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Vol. 294, pp. 256–267.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovich, I.V., Kozyrev, S.V. Manipulation of states of a degenerate quantum system. Proc. Steklov Inst. Math. 294, 241–251 (2016). https://doi.org/10.1134/S008154381606016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381606016X

Navigation