Skip to main content
Log in

Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The Hamiltonian property and integrability of the Lax equations with spectral parameter on a Riemann surface are considered. The operators of Lax pairs are meromorphic functions of special form on a Riemann surface of arbitrary positive genus with values in an arbitrary semisimple Lie algebra. The study combines the theory of Lax equations with spectral parameter on a Riemann surface, as proposed by I.M. Krichever in 2001, with a “group-theoretic approach.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, “Integrability and Seiberg–Witten exact solution,” Phys. Lett. B 355, 466–474 (1995); arXiv: hep-th/9505035.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Hitchin, “Stable bundles and integrable systems,” Duke Math. J. 54, 91–114 (1987).

    Article  MathSciNet  Google Scholar 

  3. I. Krichever, “Vector bundles and Lax equations on algebraic curves,” Commun. Math. Phys. 229, 229–269 (2002).

    Article  MATH  Google Scholar 

  4. I. M. Krichever and S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations,” Usp. Mat. Nauk 35 (6), 47–68 (1980)

    MATH  Google Scholar 

  5. I. M. Krichever and S. P. Novikov, Russ. Math. Surv. 35 (6), 53–79 (1980)].

    Article  MATH  Google Scholar 

  6. I. M. Krichever and O. K. Sheinman, “Lax operator algebras,” Funkts. Anal. Prilozh. 41 (4), 46–59 (2007)

    Article  Google Scholar 

  7. I. M. Krichever and O. K. Sheinman, Funct. Anal. Appl. 41, 284–294 (2007)]; arXiv:math/0701648 [math.RT].

    Article  MATH  MathSciNet  Google Scholar 

  8. S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields (MTsNMO, Moscow, 2005; Am. Math. Soc., Providence, RI, 2006).

    Google Scholar 

  9. A. G. Reiman and M. A. Semenov-Tyan-Shanskii, Integrable Systems: A Group Theoretical Approach (Inst. Kompyut. Issled., Moscow, 2003).

    Google Scholar 

  10. M. Schlichenmaier, “Multipoint Lax operator algebras: Almost-graded structure and central extensions,” Mat. Sb. 205 (5), 117–160 (2014)

    Article  MathSciNet  Google Scholar 

  11. M. Schlichenmaier, Sb. Math. 205, 722–762 (2014)]; arXiv: 1304.3902 [math.QA].

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Schlichenmaier and O. K. Sheinman, “Central extensions of Lax operator algebras,” Usp. Mat. Nauk 63 (4), 131–172 (2008)

    Article  Google Scholar 

  13. M. Schlichenmaier and O. K. Sheinman, Russ. Math. Surv. 63, 727–766 (2008)]; arXiv: 0711.4688 [math.QA].

    Article  MATH  Google Scholar 

  14. O. K. Sheinman, Current Algebras on Riemann Surfaces: New Results and Applications (W. de Gruyter, Berlin, 2012), De Gruyter Exp. Math. 58.

    Google Scholar 

  15. O. K. Sheinman, “Lax operator algebras of type G2,” Dokl. Akad. Nauk 455 (1), 23–25 (2014)

    Google Scholar 

  16. O. K. Sheinman, Dokl. Math. 89 (2), 151–153 (2014)]; arXiv: 1304.2510 [math.RT].

    Article  MATH  MathSciNet  Google Scholar 

  17. O. K. Sheinman, “Lax operator algebras of type G2,” in Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Ed. by V. M. Buchstaber, B. A. Dubrovin, and I. M. Krichever (Am. Math. Soc., Providence, RI, 2014)

    Google Scholar 

  18. O. K. Sheinman, AMS Transl., Ser. 2, 234

  19. O. K. Sheinman, Adv. Math. Sci. 67, pp. 373–392.

  20. O. K. Sheinman, “Lax operators algebras and gradings on semisimple Lie algebras,” Dokl. Akad. Nauk 461 (2), 143–145 (2015)

    Google Scholar 

  21. O. K. Sheinman, Dokl. Math. 91 (2), 160–162 (2015)].

    Article  Google Scholar 

  22. O. K. Sheinman, “Lax operator algebras and gradings on semi-simple Lie algebras,” Transform. Groups, doi: 10.1007/s00031-015-9340-y (2015); arXiv: 1406.5017 [math.RA].

    Google Scholar 

  23. O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with spectral parameter on a Riemann surface and semisimple Lie algebras,” Teor. Mat. Fiz. (in press).

  24. A. N. Tyurin, “Classification of vector bundles over an algebraic curve of arbitrary genus,” Izv. Akad. Nauk SSSR, Ser. Mat. 29 (3), 657–688 (1965)

    MathSciNet  Google Scholar 

  25. A. N. Tyurin, Am. Math. Soc. Transl., Ser. 2, 63, 245–279 (1967)].

    Google Scholar 

  26. È. B. Vinberg, V. V. Gorbatsevich, and A. L. Onishchik, Structure of Lie Groups and Lie Algebras (VINITI, Moscow, 1990), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 41; Engl. transl. in Lie Groups and Lie Algebras III (Springer, Berlin, 1994), Encycl. Math. Sci. 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Sheinman.

Additional information

Original Russian Text © O.K. Sheinman, 2015, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Vol. 290, pp. 191–201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheinman, O.K. Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface. Proc. Steklov Inst. Math. 290, 178–188 (2015). https://doi.org/10.1134/S0081543815060164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815060164

Keywords

Navigation