Skip to main content
Log in

The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the problem has a unique solution, which is a polynomial of degree 27. This polynomial is a linear combination of Legendre polynomials of degrees 0, 1, 2, 3, 4, 5, 8, 9, 10, 20, and 27 with positive coefficients; it has simple root 1/2 and five double roots in (−1, 1/2). We also consider the dual extremal problem for nonnegative measures on [−1, 1/2] and, in particular, prove that an extremal measure is unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Herzberger, Introduction to Interval Computations (Academic, New York, 1983; Mir, Moscow, 1987).

    MATH  Google Scholar 

  2. V. V. Arestov and A. G. Babenko, “On the Delsarte scheme for estimating contact numbers,” Proc. Steklov Inst. Math. 4, 36–65 (1997).

    MathSciNet  Google Scholar 

  3. V. V. Arestov and A. G. Babenko, “Estimates of the maximal value of angular code distance for 24 and 25 points on the unit sphere in ℝ4,” Math. Notes 68(4), 419–435 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Dunford and J. Schwartz, Linear Operators: General Theory (Interscience, New York, 1958; Inostrannaya Lit., Moscow, 1962).

    MATH  Google Scholar 

  5. P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory (N.V. Philips’ Gloeilampenfabrieken, Eindhoven, 1973; Mir, Moscow, 1976).

    MATH  Google Scholar 

  6. G. A. Kabatyanskii and V. I. Levenshtein, “Bounds for packing on a sphere and in space,” Problems Inform. Transm. 14(1), 1–17 (1978).

    Google Scholar 

  7. N. A. Kuklin, “The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space,” Trudy Inst. Mat. Mekh. UrO RAN 17(3), 225–232 (2011).

    Google Scholar 

  8. N. A. Kuklin, “Delsarte method in the problem on kissing numbers in high-dimensional spaces,” Proc. Steklov Inst. Math. 284(Suppl. 1), S108–S123 (2014).

    Article  MATH  Google Scholar 

  9. V. I. Levenshtein, “Bounds for packings of metric spaces and some applications,” Probl. Kibernet. 40, 44–110 (1983).

    MathSciNet  Google Scholar 

  10. V. I. Levenshtein, “Bounds for packings in n-dimensional Euclidean space,” Dokl. Akad. Nauk SSSR 245(6), 1299–1303 (1979).

    MathSciNet  Google Scholar 

  11. O. R. Musin, “The problem of the twenty-five spheres,” Russ. Math. Surv. 58(4), 794–795 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. V. Prasolov, Polynomials (Mosk. Tsentr Nepr. Mat. Obraz., Moscow, 2003; Springer, Berlin, 2004).

    Google Scholar 

  13. V. M. Sidel’nikov, “Extremal polynomials used in bounds of code volume,” Problems Inform. Transm. 16(3), 174–186 (1980).

    MATH  MathSciNet  Google Scholar 

  14. P. K. Suetin, Classical Orthogonal Polynomials, 3rd ed. (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  15. A. Ya. Khinchin, Continued Fractions (Gos. Izd. Tekhn.-Teor. Lit., Moscow, 1949; Dover, New York, 1997).

    Google Scholar 

  16. D. V. Shtrom, “The Delsarte method in the problem of the contact numbers of Euclidean spaces of high dimensions,” Proc. Steklov Inst. Math., Suppl. 2, S162–S189 (2002).

    Google Scholar 

  17. Ph. Delsarte, “Bounds for unrestricted codes by linear programming,” Philips Res. Rep. 27, 272–289 (1972).

    MATH  MathSciNet  Google Scholar 

  18. M. Nakata, “A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD,” in Proceedings of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, 2010 (IEEE, New York, 2010), pp. 29–34.

    Google Scholar 

  19. O. R. Musin, “The kissing problem in three dimensions,” Discrete Comput. Geom. 35(3), 375–384 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  20. O. R. Musin, “The kissing number in four dimensions,” Ann. Math. 168(1), 1–32 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. M. Odlyzko and N. J. A. Sloane, “New bounds on the number of unit spheres that can touch a unit sphere in n dimensions,” J. Combin. Theory, Ser. A 26(2), 210–214 (1979).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kuklin.

Additional information

Original Russian Text © N.A. Kuklin, 2014, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Vol. 20, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuklin, N.A. The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space. Proc. Steklov Inst. Math. 288 (Suppl 1), 99–111 (2015). https://doi.org/10.1134/S008154381502011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154381502011X

Keywords

Navigation