Skip to main content
Log in

Thermophysical problems of nano power engineering. Part 2

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The specific features of radiation heat transfer, the wetting and spreading processes on nanoscales, heat transfer in nanocomposites and nanofluids, and matters of boiling physics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Dmitriev, “Thermophysical Problems of Nano Power Engineering. Part 1, Teploenergetika, No. 12, 13–22 (2010) [Therm. Eng., No. 12 (2010)].

  2. A. S. Dmitriev, An Introduction to Nano Thermal Physics (BINOM, Moscow, 2011) (in printing) [in Russian].

    Google Scholar 

  3. B. Bhushan, Y. Jung, and K. Koch, “Micro-, Nano-, and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A 367, 1631–1672 (2009).

    Article  Google Scholar 

  4. Thermal Nanosystems and Nanomaterials, Ed. by S. Volz (Springer-Verlag Heidelberg, Berlin, 2009).

    Google Scholar 

  5. A. Majumdar, R. Chen, M. Lu, et al., “Nanowires for Enhanced Boiling Heat Transfer,” Nano Letters 9(2), 548–553 (2009).

    Article  Google Scholar 

  6. R. Furberg, Enhanced Boiling Heat Transfer from a Novel Nanodendritic Micro-Porous Copper Structure (KTH School of Industrial Engineering and Management Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, 2006).

  7. Y. Takata, S. Hidaka, and M. Kohno, “Boiling from a Super-Repellent Surface,” in Proceedings of Fifth International Conference on Enhanced, Compact, and Ultra-Compact Heat Exchangers: Science, Engineering, and Technology, Ed. by R. Shah, M. Ishizuka, T. Rudy, and Wadekar, Engineering Conferences International, Hoboken, NJ, USA, September 2005.

  8. S. Ujereh, T. Fisher, and I. Mudawarz, “Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling,” Int. J. Heat Mass Transfer 50, 4023–4038 (2007).

    Article  Google Scholar 

  9. K. Joulain, “Radiative Transfer on Short Length Scales,” in Microscale and Nanoscale Heat Transfer. Topics Appl. Physics, Ed. by S. Volz (Springer-Verlag Heidelberg, Berlin, 2007), pp. 107–131.

    Google Scholar 

  10. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “Near-Field Thermal Radiation between Two Closely Spaced Glass Plates Exceeding Planck’s Blackbody Radiation Law,” Appl. Phys. Letters 92, 133106 (2008).

    Article  Google Scholar 

  11. A. Narayanaswamy, S. Shen, and G. Chen, “Near-Field Radiative Heat Transfer between a Sphere and a Substrate,” Phys. Rev., 78, 115303 (2008).

    Article  Google Scholar 

  12. V. V. Averin, A. S. Dmitriev, and A. V. Klimenko, “Thermal Radiation from a 3D Array of Spherical Particles,” Teplofiz. Vys. Temp. 27(3), 569–576 (1989).

    Google Scholar 

  13. E. V. Ametistov and A. S. Dmitriev, “Nano Power Engineering: Potential Capacities and Prospects,” Energoekspert, No. 2, 86–91 (2008).

  14. Properties and Applications of Thermoelectric Materials. The Search for New Materials for Thermoelectric Devices, Ed. by V. Zlati and A. Hewson (Springer, September 2008).

  15. M. Byrne and Y. Gun’ko, “Recent Advances in Research on Carbon Nanotube-Polymer Composites,” Advanced Materials 22, 1672–1688 (2010).

    Article  Google Scholar 

  16. M. Bozlar, D. He, J. Bai, et al., “Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites,” Advanced Materials 22, 1654–1658 (2010).

    Google Scholar 

  17. A. S. Dmitriev and Yu. V. Ratieva, “Thermal Conductivity of Nanocomposites: Consideration of Dimensional Effects and Interphase Thermal Resistance,” in Proceedings of the 15th International Scientific-Technical Conference “Radioelectronics, Electrical Engineering, and Power Engineering,” Moscow, February 26–27, 2009 (MEI, Moscow, 2009).

    Google Scholar 

  18. J. Gao, R. Zheng, H. Ohtani, et al., “Experimental Investigation of Heat Conduction Mechanisms in Nanofluids. Clue on Clustering,” Nano Letters 9(12), 4128–4132 (2009).

    Article  Google Scholar 

  19. S. Choi, “Nanofluids: from Vision to Reality through Research,” J. Heat Transfer 131(3), 033106 (2009).

    Article  Google Scholar 

  20. K. Kahveci, “Buoyancy Driven Heat Transfer of Nanofluids in a Tilted Enclosure,” J. Heat Transfer 132(6), 062501 (2010).

    Article  Google Scholar 

  21. M. Chandrasekar and S. Suresh, “A Review on the Mechanisms of Heat Transport in Nanofluids,” Heat Transfer Eng. 30(14), 1136–1150 (2009).

    Article  Google Scholar 

  22. S. Kaka, “Review of Convective Heat Transfer Enhancement with Nanofluids,” Int. J. Heat Mass Transfer 52(13–14), 3187–3196 (2009).

    Google Scholar 

  23. Y. Ju, J. Kim, and M. Hung, “Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles,” J. Heat Transfer 130(9), 092403 (2008).

    Article  Google Scholar 

  24. M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teija, “The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids,” J. Nanopart. Res. 11(5), 1129–1136 (2009).

    Article  Google Scholar 

  25. W. Evans, R. Prasher, J. Fish, et al., “Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids,” Int. J. Heat Mass Transfer 51(5–6), 1431–1438 (2008).

    Article  MATH  Google Scholar 

  26. P. Keblinski, R. Prasher, and J. Eapen, “Thermal Conductance of Nanofluids: Is the Controversy Over?” J. Nanopart. Res. 10, 1089–1097 (2008).

    Article  Google Scholar 

  27. A. S. Dmitriev, “On Describing Flows of Nanofluids in Twisted Nanotubes and Hollow Nanowires,” Teplov. Protsessy v Tekhn. 1(6), 218–221 (2009).

    Google Scholar 

  28. J. Buongiorno, D. Venerus, N. Prabhat, et al., “A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys. 106(9), 094312 (2009).

    Article  Google Scholar 

  29. I. Bang, J. Buongiorno, L. Hu, and H. Wang, “Measurement of Key Pool Boiling Parameters in Nanofluids for Nuclear Applications,” J. Power Energy Syst. 2(1), 340–351 (2008).

    Article  Google Scholar 

  30. D. Wen, “On the Role of Structural Disjoining Pressure to Boiling Heat Transfer of Thermal Nanofluids,” J. Nanopart. Res. No. 10, 1129–1140 (2008).

    Google Scholar 

  31. A. S. Dmitriev and A. A. Ikrin, “Studies of New Thermoelectric Cooling Methods on the Basis of Nanostructured Materials,” in Proceedings of the 15th International Scientific-Technical Conference “Radioelectronics, Electrical Engineering, and Power Engineering,” Moscow, February 26–27, 2009 (MEI, Moscow, 2009), pp. 49–50.

    Google Scholar 

  32. C. Wong and K. Moon, Nano-Bio-Electronic, Photonic and MEMS Packaging, Ed. by Y. Li (Springer Science and Business Media, LLC, 2010).

  33. S. Kaka, Microscale Heat Transfer Fundamentals and Applications, Ed. by L. Vasiliev, Y. Bayazitoglu, and Y. Yener (Univ. of Miami, Coral Gables, FL, USA, 2005).

    Google Scholar 

  34. Properties and Applications of Thermoelectric Materials. The Search for New Materials for Thermoelectric Devices, Ed. by V. Zlati and A. Hewson (Springer, September 2008).

  35. Thermal and Power Management of Integrated Circuits, Ed. by A. Vassighi and M. Sachdev (Springer Science and Business Media Inc., 2006).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Dmitriev, 2011, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, A.S. Thermophysical problems of nano power engineering. Part 2. Therm. Eng. 58, 301–309 (2011). https://doi.org/10.1134/S0040601511040057

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601511040057

Keywords

Navigation