Skip to main content
Log in

Thermocapillary Convection of a Vertical Swirling Liquid

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new exact solution of the Oberbeck–Boussinesq equations has been presented which describes the steady-state Marangoni convection of a vertical swirling liquid in the shear flow of a viscous incompressible liquid. The velocity field of the nonuniform vortical liquid flow is studied in detail. It is shown that there are stagnation points in the liquid flow, the number of which can be as large as five. The existence of stagnation points leads to the formation of counterflows with very complex topology resembling cellular flow patterns. The tangential stresses in the liquid flow are not constant. They are also stratified from the zone of tensile and compressive stresses. Because of the structure of the exact solution, the vorticity components coincide to within a dissipative coefficient with the expressions for the tangential stresses, which means that there are several counterrotating vortices in the liquid. Similar studies of polynomial exact solutions for temperature and pressure determined the number of zones of stratification of the corresponding fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Gershuni, G.Z. and Zhukhovitskii, E.M., Konvektivnaya neustoichivost' neszhimaemoi zhidkosti (Convective Instability of Incompressible Liquids), Moscow: Nauka, 1972.

  2. Kutepov, A.M., Polyanin, A.D., Zapryanov, Z.D., Vyaz’min, A.V., and Kazenin, D.A., Khimicheskaya gidrodinamika (Chemical Fluid Dynamics), Moscow: Byuro Kvantum, 1996.

  3. Getling, A.V., Konvektsiya Releya–Benara. Struktura i dinamika (Rayleigh–Bénard Convection: Structures and Dynamics), Moscow: Ediatorial URSS, 1999.

  4. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford: Clarendon, 1961.

    Google Scholar 

  5. Benard, H., Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection, en regime permanent, These, Paris: Gauthier-Villars, 1901.

    Google Scholar 

  6. Benard, H., Etude experimentale des courants de convection dans une nappe liquide. Regime permanent: tourbillons cellulaires, J. Phys. Theor. Appl., 1900, vol. 9, no. 1, p. 513.

    Article  Google Scholar 

  7. Benard, H., Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection, en regime permanent, Ann. Chim. Phys., 1901, vol. 23, p. 62.

    Google Scholar 

  8. Ostroumov, G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi (Free Convection under the Conditions of an Inner Problem), Moscow: Gos. Izd. Tekh.-Teor. Lit., 1952.

  9. Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Tech. Phys., 1966, vol. 7, no. 3, p. 43.

    Article  Google Scholar 

  10. Ortiz-P’erez, A.S. and D’avalos-Orozco, L.A., Convection in a horizontal fluid layer under an inclined temperature gradient, Phys. Fluids, 2011, vol. 28, no. 3, p. 084107.

    Article  Google Scholar 

  11. Smith, M.K. and Davis, S.H., Instabilities of dynamic thermocapillary liquid layers. Pt. 1. Convective instabilities, J. Fluid Mech., 1983, vol. 132, p. 119.

    Article  CAS  Google Scholar 

  12. Knyazev, D.V., Two-dimensional flows of a viscous binary fluid between moving solid boundaries, J. Appl. Mech. Tech. Phys., 2011, vol. 52, no. 2, p. 212.

    Article  CAS  Google Scholar 

  13. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F., Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid, Comput. Continuum Mech., 2015, vol. 8, no. 4, p. 445.

    Article  Google Scholar 

  14. Goncharova, O.N. and Kabov, O.A., Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection, J. Phys.: Conf. Ser., 2016, vol. 754, no. 3, p. 032008–1.

    Google Scholar 

  15. Napolitano, L.G., Plane Marangoni–Poiseuille flow of two immiscible fluids, Acta Astronaut., 1980, vol. 7, no. 4, p. 461.

    Article  CAS  Google Scholar 

  16. Ryzhkov, I.I., Termodiffuziya v smesyakh: uravneniya, simmetrii, resheniya i ikh ustoichivost' (Thermal Diffusion in Mixtures: Equations, Symmetries, and Solutions and Their Stability), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2013.

  17. Ryzhkov, I.I., The extended Graetz problem with specified heat flux for multicomponent fluids with the Soret and Dufour effects, Int. J. Heat Mass Transfer, 2013, vol. 66, p. 461.

    Article  CAS  Google Scholar 

  18. Shliomis, M.I. and Yakushin, V.I., Convection in a two-layer binary system with evaporation, Uch. Zap. Perm. Gos. Univ., Ser. Gidrodin., 1972, no. 4, p. 129.

  19. Ryzhkov, I.I. and Shevtsova, V., Thermocapillary instabilities in liquid columns under co- and counter-current gas flow, Int. J. Heat Mass Transfer, 2012, vol. 55, no. 4, p. 1236.

    Article  Google Scholar 

  20. Andreev, V.K. and Bekezhanova, V.B., Stability of non-isothermal fluids (Review), J. Appl. Mech. Tech. Phys., vol. 54, no. 2, p. 2013.

  21. Goncharova, O.N. and Kabov, O.A., Gravitational-thermocapillary convection of fluid in the horizontal layer in co-current gas flow, Dokl. Phys., 2009, vol. 54, no. 5, pp. 242–247. https://doi.org/10.1134/S1028335809050061

    Article  CAS  Google Scholar 

  22. Bekezhanova, V.B. and Goncharova, O.N., Problems of evaporative convection (Review), Fluid Dyn., 2018, vol. 53, suppl. 1, pp. S69–S102. https://doi.org/10.1134/S001546281804016X

    Article  Google Scholar 

  23. Bekezhanova, V.B., Shefer, I.A., Goncharova, O.N., and Rezanova, E.B., Stability of two-layer fluid flows with evaporation at the interface, Fluid Dyn., 2017, vol. 52, no. 2, p. 189.

    Article  CAS  Google Scholar 

  24. Fedyushkin, A., Bourago, N., Polezhaev, V., and Zharikov, E., The influence of vibration on hydrodynamics and heat–mass transfer during crystal growth, J. Cryst. Growth, 2005, vol. 275, nos. 1–2, pp. e1557–e1563. https://doi.org/10.1016/j.jcrysgro.2004.11.220

    Article  CAS  Google Scholar 

  25. Gershuni, G.Z. and Lubimov, D.V., Thermal Vibrational Convection, New York: Wiley, 1998.

    Google Scholar 

  26. Ryzhkov, I.I. and Stepanova, I.V., Group properties and exact solutions of equations for vibrational convection of a binary mixture, J. Appl. Mech. Tech. Phys., 2011, vol. 52, no. 4, p. 560.

    Article  CAS  Google Scholar 

  27. Bratsun, D.A. and Mosheva, E.A., Peculiar properties of density wave formation in a two-layer system of reacting miscible liquids, Comput. Continuum Mech., 2018, vol. 11, no. 3, p. 302.

    Article  Google Scholar 

  28. Pukhnachev, V.V., Nonstationary analogs of the Birikh solution, Izv. Altai.Gos. Univ., 2011, vol. 69, nos. 1–2, p. 62.

    Google Scholar 

  29. Birikh, R.V. and Pukhnachev, V.V., An axial convective flow in a rotating tube with a longitudinal temperature gradient, Dokl. Phys., 2011, vol. 56, no. 1, p. 47.

    Article  CAS  Google Scholar 

  30. Aristov, S.N. and Prosviryakov, E.Y., On laminar flows of planar free convection, Russ. J. Nonlinear Dyn., 2013, vol. 9, no. 4, pp. 651–657. https://doi.org/10.20537/nd1304004

    Article  Google Scholar 

  31. Aristov, S.N. and Prosviryakov, E.Yu., A new class of exact solutions for three-dimensional thermal diffusion equations, Theor. Found. Chem. Eng., 2016, vol. 50, no. 3, pp. 286–293. https://doi.org/10.1134/S0040579516030027

    Article  CAS  Google Scholar 

  32. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F., Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, pp. 132–141. https://doi.org/10.1134/S0040579516020019

    Article  CAS  Google Scholar 

  33. Bekezhanova, V.B., Instability of a two-layer system in the presence of spatial heat sources, Vychisl. Tekhnol., 2008, vol. 13, no. 4, p. 24.

    Google Scholar 

  34. Burmasheva, N.V. and Prosviryakov, E.Yu., Large-scale layered steady-state convection of a viscous incompressible liquid under the effect of tangential stresses on the upper boundary: Study of velocity fields, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2017, vol. 21, no. 1, p. 180.

    Google Scholar 

  35. Burmasheva, N.V. and Prosviryakov, E.Yu., Large-scale layered steady-state convection of a viscous incompressible liquid under the effect of tangential stresses on the upper boundary: Study of temperature and pressure fields, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2017, vol. 21, no. 4, p. 736.

    Google Scholar 

  36. Goncharova, O.N., Kabov, O.A., and Pukhnachov, V.V., Solutions of special type describing the three dimensional thermocapillary flows with an interface, Int. J. Heat Mass Transfer, 2012, vol. 55, no. 4, pp. 715–725. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.038

    Article  Google Scholar 

  37. Andreev, V.K., Gaponenko, Yu.A., Goncharova, O.N., and Pukhnachov, V.V., Mathematical Models of Convection, De Gruyter Studies in Mathematical Physics, Berlin: De Gruyter, 2012.

  38. Margerit, J., Colinet, P., Lebon, G., Iorio, C.S., and Legros, J.C., Interfacial nonequilibrium and Bénard–Marangoni instability of a liquid-vapor system, Phys. Rev. E, 2003, vol. 68, p. 041601. https://doi.org/10.1103/PhysRevE.68.041601

    Article  CAS  Google Scholar 

  39. Andreev, V.K., The Birikh solutions to convection equations and their generalizations, Preprint of the Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 2010, no. 1–10.

  40. Schwarz, K.G., Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries, Fluid Dyn., 2014, no. 4, p. 438.

  41. Aristov, S.N. and Shvarts, K.G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti (Vortex Flows of Advective Nature in a Rotating Liquid Layer), Perm: Perm. Univ., 2006.

  42. Vyatkin, A.A., Ivanova, A.A., Kozlov, V.G., and Sabirov, R.R., Convection of a heat-generating fluid in a rotating horizontal cylinder, Fluid Dyn., 2014, vol. 49, no. 1, p. 17.

    Article  CAS  Google Scholar 

  43. Kozlov, V., Vjatkin, A., and Sabirov, S., Convection of liquid with internal heat release in a rotating container, Acta Astronaut., 2013, vol. 89, p. 99.

    Article  Google Scholar 

  44. Kozlov, V.G., Thermal vibrational convection in rotating cavities, Fluid Dyn., 2004, vol. 39, no. 1, p. 3.

    Article  Google Scholar 

  45. Gorshkov, A.V. and Prosviryakov, E.Yu., Ekman convective layer flow of a viscous incompressible fluid, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 2, pp. 189–195. https://doi.org/10.1134/S0001433818020081

    Article  Google Scholar 

  46. Aristov, S.N. and Shvarts, K.G., Advective flow in a rotating liquid film, J. Appl. Mech. Tech. Phys., 2016, vol. 57, no. 1, p. 188.

    Article  CAS  Google Scholar 

  47. Aristov, S.N. and Myasnikov, V.P., Time-dependent three-dimensional structures in the near-surface layer of the ocean, Dokl. Phys., 1996, vol. 41, no. 8, p. 358.

    Google Scholar 

  48. Aristov, S.N. and Nycander, J., Convective flow in baroclinic vortices, J. Phys. Oceanogr., 1994, vol. 24, no. 9, p. 1841.

    Article  Google Scholar 

  49. Aristov, S.N. and Prosviryakov, E.Y., Inhomogeneous Couette flow, Russ. J. Nonlinear Dyn., 2014, vol. 10, no. 2, pp. 177–182. https://doi.org/10.20537/nd1402004

    Article  Google Scholar 

  50. Prosviryakov, E.Yu. and Spevak, L.F., Layered three-dimensional nonuniform viscous incompressible flows, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 765–770. https://doi.org/10.1134/S0040579518050391

    Article  CAS  Google Scholar 

  51. Brutyan, M.A. and Krapivskii, P.L., The exact solution of the Navier–Stokes equations for the evolution of the vortex structure in a generalized shear flow, Comput. Math. Math. Phys., 1992, vol. 32, no. 2, p. 270.

    Google Scholar 

  52. Aristov, S.N. and Prosviryakov, E.Yu., Unsteady layered vortical fluid flows, Fluid Dyn., 2016, vol. 51, no. 2, pp. 148–154. https://doi.org/10.1134/S0015462816020034

    Article  Google Scholar 

  53. Aristov, S.N., Knyazev, D.V., and Polyanin, A.D., Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642–662. https://doi.org/10.1134/S0040579509050066

    Article  CAS  Google Scholar 

  54. Polyanin, A.D. and Aristov, S.N., A new method for constructing exact solutions to three-dimensional Navier–Stokes and Euler equations, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, pp. 885–890. https://doi.org/10.1134/S0040579511060091

    Article  CAS  Google Scholar 

  55. Aristov, S.N. and Polyanin, A.D., New classes of exact solutions and some transformations of the Navier–Stokes equations, Russ. J. Math. Phys., 2010, vol. 17, no. 1, p. 1.

    Article  Google Scholar 

  56. Polyanin, A.D., Exact solutions to new classes of reaction-diffusion equations containing delay and arbitrary functions, Theor. Found. Chem. Eng., 2015, vol. 49, no. 2, pp. 169–175. https://doi.org/10.1134/S0040579515020104

    Article  CAS  Google Scholar 

  57. Couette, M., Études sur le frottement des liquids, Ann. Chim. Phys., 1890, vol. 21, pp. 433–510.

    Google Scholar 

  58. Ekman, V.W., On the influence of the earth’s rotation on ocean-currents, Ark. Mat. Astron. Fys., 1905, vol. 2, no. 11, p. 1.

    Google Scholar 

  59. Mehdizadeh, A. and Oberlack, M., Analytical and numerical investigations of laminar and turbulent Poiseuille–Ekman flow at different rotation rates, Phys. Fluids, 2010, vol. 22, p. 105104.

    Article  Google Scholar 

  60. Kopp, M.I., Yanovsky, V.V., and Tur, A.V., Nonlinear vortex dynamo in a rotating stratified moist atmosphere, J. Exp. Theor. Phys., 2017, vol. 124, no. 6, p. 1010.

    Article  CAS  Google Scholar 

  61. Moffatt, H.K., Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals, J. Fluid Mech., 1985, vol. 159, pp. 359–378. https://doi.org/10.1017/S0022112085003251

    Article  Google Scholar 

  62. Moffatt, H.K., Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations, J. Fluid Mech., 1986, vol. 166, pp. 359–378. https://doi.org/10.1017/S0022112086000198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Burmasheva or E. Yu. Prosviryakov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmasheva, N.V., Prosviryakov, E.Y. Thermocapillary Convection of a Vertical Swirling Liquid. Theor Found Chem Eng 54, 230–239 (2020). https://doi.org/10.1134/S0040579519060034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519060034

Keywords:

Navigation