Skip to main content
Log in

Dust Complex for Studying the Dust Particle Dynamics in the Near-Surface Atmosphere of Mars

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The Dust Complex (DC) instrument was designed to be installed on the landing platform of the ExoMars project. The purpose of the experiment is to study the dynamics of dust particles in the near-surface atmosphere of Mars and to evaluate the main characteristics of the near-surface medium that determine their dynamics. The device makes it possible to register dust particles in the near-surface atmosphere of Mars, determine the main parameters and measure some characteristics of the plasma-dust medium related to the dynamics of dust particles near the Martian surface. The article provides a description of the device, its blocks and sensors, the main elements of the measurement program and characteristics of the measured parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Busarev, V.V., Prokof’eva-Mikhailovskaya, V.V., and Bochkov, V.V., Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar System, Phys.-Usp., 2007, vol. 50, no. 6, pp. 637–647.

    Article  ADS  Google Scholar 

  2. Cozzolino, F., Mennella, V., Ruggeri, A.C., Mongelluzzo, G., Franzese, G., Popa, C.I., Molfese, C., Esposito, F., Porto, C., and Scaccabarozzi, D., Martian environment chamber: Dust systems injections, Planet. Space Sci., 2020, vol. 190, p. 104971. https://doi.org/10.1016/j.pss.2020.104971

    Article  Google Scholar 

  3. Cozzolino, F., Franzese, G., Mongelluzzo, G., Molfese, C., Esposito, F., Ruggeri, A.C., Porto, C., Silvestro, S., Popa, C.I., Mennella, V., Scaccabarozzi, D., Saggin, B., Martin, Ortega., Rico, A., Arruego Rodriguez, I., De Mingo, J.R., Andrés Santiuste, N., Brienza, D., and Cortecchia, F., Techniques to verify the sampling system and flow characteristics of the sensor MicroMED for the ExoMars 2022 mission, Measurement, 2021, vol. 185, p. 110075. https://doi.org/10.1016/j.measurement.2021.110075

    Article  Google Scholar 

  4. Duran, P. and Moure, C., Piezoelectric ceramics, Mater. Chem. Phys., 1989, vol. 15, nos. 3–4, pp. 193–211. https://doi.org/10.1016/0254-0584(86)90001-5

    Article  Google Scholar 

  5. Eden, H.F. and Vonnegut, B., Electrical breakdown cause by dust motion in low-pressure atmospheres: Consideration for Mars, Science, 1973, vol. 180, no. 4089, pp. 962–963.

    Article  ADS  Google Scholar 

  6. Esposito, F., Colangeli, L., Della, CorteV., Molfese, C., Palumbo, P., Ventura, S., Merrison, J., Nornberg, P., Rodriguez-Gomez, J.F., Lopez-Moreno, J.J., del Moral, B., Jeronimo, J.M., Morales, R., Battistelli, E., Gueli, S., and Paolinetti, R., MEDUSA: Observation of atmospheric dust and water vapor close to the surface of Mars, Int. J. Mars Sci. Explor., 2011, vol. 6, pp. 1–12.

    Google Scholar 

  7. Esposito, F., Molfese, C., Cozzolino, F., Cortecchia, F., Mongelluzzo, G., Saggin, B., Scaccabarozzi, D., Rodriguez, I.A., Rico, A.M.O., Santiuste, N.A., de Mingo, J.R., Schipani, P., Silvestro, S., Popa, C.I., Dall’Ora, M., Zakharov, A., Dolnikov, G., Lyash, A., Kuznetsov, I., Mugnuolo, R., and Pirrotta, S., The characterization of airborne dust close to the surface of Mars: the Dust Complex/MicroMED sensor on board the ExoMars 2020 surface platform, EPSC Abstracts, 2018, vol. 12, p. EPSC2018-1159-1.

  8. Farrell, W.M., Renno, N., Delory, G.T., Cummer, S.A., and Marshall, J.R., Integration of electrostatic and fluid dynamics within a dust devil, J. Geophys. Res.: Planets, 2006, vol. 111, pp. 1–10.

    Article  Google Scholar 

  9. Fenton, L.K., Geissler, P.E., and Haberle, R.M., Global warming and climate forcing by recent albedo changes on Mars, Nature, 2007, vol. 446, no. 7136, pp. 646–649.

    Article  ADS  Google Scholar 

  10. Franzese, G., Mongelluzzo, G., Cozzolino, F., Porto, C., Ruggeri, A.C., Esposito, F., Cortecchia, F., Martin-Ortega, A., Andres Santiuste, N., De Mingo, J.R., Popa, C.I., Silvestro, S., and Brienza, D., and Arruego Rodriguez, I., MicroMED: Study of the relation between signal durations and grain diameters, IEEE 8th Int. Workshop on Metrology for AeroSpace (MetroAeroSpace), 2021, pp. 247–252. https://doi.org/10.1109/MetroAeroSpace51421.2021.9511713

  11. Golitsyn, G.S., On the Martian dust storms, Icarus, 1973, vol. 18, no. 1, pp. 113–119.

    Article  ADS  Google Scholar 

  12. Harrison, R.G., Barth, E., Esposito, F., Merrison, J., Montmessin, F., Aplin, K.L., Borlina, C., Berthelier, J.J., Déprez, G., Farrell, W.M., Houghton, I.M.P., Renno, N.O., Nicoll, K.A., Tripathi, S.N., and Zimmerman, M., Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity, Space Sci. Rev., 2016, vol. 203, no. 1, pp. 299–345.

    Article  ADS  Google Scholar 

  13. Hess, S.L., Henry, R.M., Leovy, C.D., Ryan, J.A., and Tilmann, J.E., Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 1977, vol. 82, no. 28, pp. 4559–4574.

    Article  ADS  Google Scholar 

  14. Jakosky, B.M. and Martin, T.Z., Mars: North-polar atmospheric warming during dust storms, Icarus, 1987, vol. 72, no. 3, pp. 528–534.

    Article  ADS  Google Scholar 

  15. Korablev, O.I., Krasnopolsky, V.A., Rodin, A.V., and Chassefiere, E., Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft, Icarus, 1993, vol. 102, no. 1, pp. 76–87.

    Article  ADS  Google Scholar 

  16. Koval, I.K. and Yanovitskii, É.G., Optical parameters of the Martian surface and atmosphere, Sov. Astron., 1969, vol. 13, no. 3, pp. 499–506.

    ADS  Google Scholar 

  17. Landis, G., A. dust obscuration on mars solar arrays, Acta Astronaut., 1996, vol. 38, no. 11, pp. 885–891.

    Article  ADS  Google Scholar 

  18. Landis, G.A. and Jenkins, P.P., Measurement of the setting rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder, J. Geophys. Res.: Planets, 2000, vol. 105, no. E1, pp. 1855–1857.

    Article  ADS  Google Scholar 

  19. Markiewicz, W.J., Sablotny, R.M., Keller, H.U., Thomas, N., Titov, D., and Smith, P.H., Optical properties of the Martian aerosols as derived from imager for mars pathfinder midday sky brightness data, J. Geophys. Res.: Planets, 1999, vol. 104, no. E4, pp. 9009–9017.

    Article  ADS  Google Scholar 

  20. Michael, M., Tripathi, S.N., and Mishra, S.K., Dust charging and electrical conductivity in the day and nighttime atmosphere of Mars, J. Geophys. Res.: Planets, 2008, vol. 113, pp. 1–11.

    Article  Google Scholar 

  21. Mongelluzzo, G., Franzese, G., Cozzolino, F., Esposito, F., Ruggeri, A.C., Porto, C., Molfese, C., Silvestro, S., Popa, C.I., Scaccabarozzi, D., Saggin, B., Martin-Ortega, A., Arruego Rodriguez, I., De Mingo, J.R., Andrés Santiuste, N., Brienza, D., Cortecchia, F., Merrison, J.P., and Iversen, J.J., Performance analysis of the “MicroMED” optical particle counter in windy conditions, IEEE 8th Int. Workshop on Metrology for AeroSpace (MetroAeroSpace), 2021, pp. 241–246. https://doi.org/10.1109/MetroAeroSpace51421.2021.9511691

  22. Mongelluzzo, G., Esposito, F., Cozzolino, F., Franzese, G., Ruggeri, A.C., Porto, C., Molfese, C., Scaccabarozzi, D., and Saggin, B., Design and CFD analysis of the fluid dynamic sampling system of the “MicroMED” optical particle counter, Sensors, 2019a, vol. 19, p. 5037. https://doi.org/10.3390/s19225037

    Article  ADS  Google Scholar 

  23. Mongelluzzo, G., Esposito, F., Cozzolino, F., Molfese, C., Silvestro, S., Franzese, G., Popa, C.I., Lubieniecki, M., Cortecchia, F., Saggin, B., Scaccabarozzi, D., and Zakharov, A., CFD analysis and optimization of the sensor “MicroMED” for the ExoMars 2020 mission, Measurement, 2019b, vol. 147, p. 106824. https://doi.org/10.1016/j.measurement.2019.07.052

    Article  Google Scholar 

  24. Moores, J.E., Komguem, L., Whiteway, J.A., Lemmon, M.T., Dickinson, C., and Daerden, F., Observations of near-surface fog at the Phoenix Mars landing site, Geophys. Res. Lett., 2011, vol. 38, no. 4, pp. 1–6.

    Article  Google Scholar 

  25. Moroz, V.I., Kerzhanovich, V.V., and Krasnopol’skii, V.A., Engineering model of the atmosphere of Mars for the Mars-94 project (MA-90), Kosm. Issled., 1991, vol. 29, no. 1, pp. 3–84.

    ADS  Google Scholar 

  26. Moroz, V.I., Petrova, E.V., and Ksanfomality, L.V., Spectrophotometry of Mars in the KRFM experiment of the Phobos mission: Some properties of the particles of atmospheric aerosols and the surface, Planet. Space Sci., 1993, vol. 41, no. 8, pp. 569–585.

    Article  ADS  Google Scholar 

  27. Newman, C.E., Lewis, S.R., Read, P.L., and Forget, F., Modeling the Martian dust cycle 1. Representations of dust transport processes, J. Geophys. Res.: Planets, 2002, vol. 107, no. E12, pp. 6-1–6-18.

  28. Perko, H.A., Nelson, J.D., and Green, J.R., Review of Martian dust composition, transport, deposition, adhesion, and removal, Space 2002 and Robotics 2002, ASCE Press, 2002, pp. 176–189.

    Google Scholar 

  29. Pollack, J.B., Colburn, D., Kahn, R., Hunter, J., Van Camp, W., Carlston, C.E., and Wolf, M.R., Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data, J. Geophys. Res., 1977, vol. 82, no. 28, pp. 4479–4496.

    Article  ADS  Google Scholar 

  30. Pollack, J.B., Colburn, D.S., Flasar, F.M., Kahn, R., Carlston, C.E., and Pidek, D., Properties and effects of dust particles suspended in the Martian atmosphere, J. Geophys. Res.: Solid Earth, 1979, vol. 84, no. B6, pp. 2929–2945.

    Article  Google Scholar 

  31. Renno, N.O., Wong, A.S., and Atreya, S.K., Electrical discharges and broadband radio emission by Martian dust devils and dust storms, Geophys. Res. Lett., 2003, vol. 30, no. 22, pp. 1-1–1-4.

  32. Scaccabarozzi, D., Saggin, B., Pagliara, C., Magni, M., Tarabini, M., Esposito, F., Molfese, C., Cozzolino, F., Cortecchia, F., Dolnikov, G., Kuznetsov, I., Lyash, A., and Zakharov, A., MicroMED, design of a particle analyzer for Mars, Measurement, 2018, vol. 122, pp. 466–472. https://doi.org/10.1016/j.measurement.2017.12.041

    Article  ADS  Google Scholar 

  33. Scaccabarozzi, D., Saggin, B., Somaschini, R., Magni, M., Valnegri, P., Esposito, F., Molfese, C., Cozzolino, F., and Mongelluzzo, G., “MicroMED” optical particle counter: From design to flight model, Sensors, 2020, vol. 20, p. 611. https://doi.org/10.3390/s20030611

    Article  ADS  Google Scholar 

  34. Seran, E. and Godefroy, M., What can we learn from the electric field and conductivity measurements in auroral atmosphere, Earth Space Sci., 2019, vol. 6, pp. 136–145. https://doi.org/10.1029/2018EA000463

    Article  ADS  Google Scholar 

  35. Seran, E., Godefroy, M., Renno, N., and Elliott, H., Variations of electric field and electric resistivity of air caused by dust motion, J. Geophys. Res.: Space Physics, 2013, vol. 118, no. 8, pp. 5358–5368.

    Article  ADS  Google Scholar 

  36. Seran, E., Godefroy, M., Pili, E., Michielsen, N., and Bondiguel, S., What can we learn from measurements of air electric conductivity in 222Rn-rich atmosphere, Earth Space Sci., 2017, vol. 4, pp. 91–106. https://doi.org/10.1002/2016EA000241

    Article  ADS  Google Scholar 

  37. Smith, M.D., Spacecraft observations of the Martian atmosphere, Annu. Rev. Earth Planet. Sci., 2008, vol. 36, pp. 191–219.

    Article  ADS  Google Scholar 

  38. Tomasko, M.G., Doose, L.R., Lemmon, M., Smith, P.H., and Wegryn, E., Properties of dust in the Martian atmosphere from the imager on Mars Pathfinder, J. Geophys. Res.: Planets, 1999, vol. 104, no. E4, pp. 8987–9007.

    Article  ADS  Google Scholar 

  39. Vandaele, A.C., Korablev, O., Daerden, F., Aoki, S., et al., Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter, Nature, 2019, vol. 568, pp. 521–525.

    Article  ADS  Google Scholar 

  40. Whiteway, J., Daly, M., Carswell, A., Duck, T., Dickinson, C., Komguem, L., and Cook, C., Lidar on the Phoenix mission to Mars, J. Geophys. Res.: Planets, 2008, vol. 113, p. E00A08.

    Article  ADS  Google Scholar 

  41. Whitten, R.C., Poppoff, I.G., and Sims, J.S., The ionosphere of Mars below 80 km altitude—I. Quiescent conditions, Planet. Space Sci., 1971, vol. 19, no. 2, pp. 243–250.

    Article  ADS  Google Scholar 

  42. Yair, Y., Fischer, G., Simoes, F., Renno, N., and Zarka, P., Updated review of planetary atmospheric electricity, Space Sci. Rev., 2008, vol. 137, pp. 29–49.

    Article  ADS  Google Scholar 

  43. Zakharov, A.V., Dol’nikov, G.G., Kuznetsov, I.A., Lyash, A.N., Dubov, A.E., Afonin, V.V., Bednyakov, S.A., Bychkova, A.S., Grushin, V.A., Dokuchaev, I.V., Kartasheva, A.A., Popel, S.I., Shashkova, I.A., Shekhovtsova, A.V., Yakovlev, A.V., Vasiliev, M.M., Lisin, E.A., Petrov, O.F., Borisov, N.D., and Zelenyi, L.M., PmL instrument onboard Luna-25 lander: Plasma–dust measurements in the surface exosphere, Sol. Syst. Res., 2021, vol. 55, no. 6, pp. 576–587. https://doi.org/10.1134/S0038094621060125

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.V., Dolnikov, G.G., Kuznetsov, I.A. et al. Dust Complex for Studying the Dust Particle Dynamics in the Near-Surface Atmosphere of Mars. Sol Syst Res 56, 351–368 (2022). https://doi.org/10.1134/S0038094622060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094622060065

Keywords:

Navigation