Skip to main content
Log in

Release of Matter into the Atmosphere During the Fall of Ten-Kilometer Asteroids into the Ocean

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—

The results of numerical modeling of the vertical fall of ten-kilometer asteroids onto a solid surface and into an ocean with a depth of 1 to 7 km are presented. The calculations obtained the maximum masses of water and soil emitted into the atmosphere, as well as the masses of water and soil remaining in the atmosphere 30 minutes after the impact. It is concluded that that when asteroids about ten kilometers in size fall into the ocean, the impact on the Earth’s atmosphere will, apparently, be no less strong than when asteroids fall on land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ahrens, N.J. and O’Keefe, J.D., Impact on the Earth, ocean and atmosphere, Int. J. Impact Eng., 1987, vol. 5, pp. 13–32.

    Article  ADS  Google Scholar 

  2. Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V., Extraterrestrial cause for the Cretaceous–Tertiary extinction, Science, 1980, vol. 208, pp. 1095–1108.

    Article  ADS  Google Scholar 

  3. Birks, J.W., Crutzen, P.J., and Roble, R.G., Frequent ozone depletion resulting from impacts of asteroids and comets, in Comet/Asteroid Impacts and Human Society, Bobrowsky, P.T. and Rickman, H., Eds., Berlin: Springer, 2007, pp. 225–245.

    Google Scholar 

  4. Claeys, P., Impact events and the evolution of the Earth, in Advances in Astrobiology and Biogeophysics, Lectures in Astrobiology II, Gargaud, M., Martin, H., Claeys, P, Eds., Berlin: Springer Verlag, 2007, pp. 239–280.

    Google Scholar 

  5. Feulner, G., Limits to biodiversity cycles from a unified model of mass–extinction events, Int. J. Astrobiol., 2011, vol. 10, pp. 123–129.

    Article  ADS  Google Scholar 

  6. Hildebran, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo-Zanoguera, A., Jacobsen, S.B., and Boynton, W.V., Chicxulub crater. A possible Cretaceous–Tertiary boundary impact crater on the Yucatan peninsula, Mexico, Geology, 1991, vol. 19, pp. 867–871.

    Article  ADS  Google Scholar 

  7. Ivanov, B.A., A simple model of crater formation, Meteoritika, 1979, no. 38, pp. 68–85.

  8. Johnson, B.C. and Melosh, H.J., Formation of spherules in impact produced vapor plumes, Icarus, 2012, vol. 217, no. 1, pp. 416–430.

    Article  ADS  Google Scholar 

  9. Koeberl, K. and Ivanov, B., Asteroid impact effects on snowball Earth, Meteorit. Planet. Sci., 2019, vol. 54, no. 10, pp. 2273–2285.

    Article  ADS  Google Scholar 

  10. Kring, D.A., The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 255, pp. 4–21.

    Article  Google Scholar 

  11. Kuznetsov, N.M., Termodinamicheskie funktsii i udarnye adiabaty vozdukha pri vysokikh temperaturakh (Thermodynamic Functions and Shock Adiabats of Air at High Temperatures), Moscow: Mashinostroenie, 1965.

  12. Melosh, H.J., A hydrocode equation of state for SiO2, Meteorit. Planet. Sci., 2007, vol. 42, no. 12, pp. 2079–2098.

    Article  ADS  Google Scholar 

  13. Okeanograficheskaya entsiklopediya (Oceanographic Encyclopedia), Gidrometeoizdat, 1974.

  14. Potter, R.W.K., Kring, D.A., Collins, G.S., Kiefer, W.S., and McGovern, P.J., Numerical modeling of the formation and structure of the Orientale impact basin, J. Geophys. Res.: Planets, 2013, vol. 118, no. 5, pp. 963–979.

    Article  ADS  Google Scholar 

  15. Racki, G., The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome,” Acta Palaeontol. Pol., 2012, vol. 57, no. 4, pp. 681–702.

    Article  Google Scholar 

  16. Rampino, M.R., Relationship between impact-crater size and severity of related extinction episodes, Earth-Science Rev., 2020, vol. 201, id 102990.

    Article  Google Scholar 

  17. Robertson, D.K. and Gisler, G.R., Near and far-field hazards of asteroid impacts in oceans, Acta Astronaut., 2019, vol. 156, pp. 262–277.

    Article  ADS  Google Scholar 

  18. Shuvalov, V.V. and Khazins, V.M., Numerical simulation of ionospheric disturbances generated by the Chelyabinsk and Tunguska space body impacts, Sol. Syst. Res., 2018, vol. 52, no. 2, pp. 129–138.

    Article  ADS  Google Scholar 

  19. Shuvalov, V. and Dypvik, H., Ejecta formation and crater development of the Mjolnir impact, Meteorit. Planet. Sci., 2004, vol. 39, no. 3, pp. 467–479.

    Article  ADS  Google Scholar 

  20. Shuvalov, V.V. and Trubetskaya, I.A., Numerical modeling of the formation of the Eltanin submarine impact structure, Sol. Syst. Res., 2007, vol. 41, no. 6, pp. 56–64.

    Article  ADS  Google Scholar 

  21. Shuvalov, V.V., Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to thermal layer effect, Shock Waves, 1999, vol. 9, no. 6, pp. 381–390.

    Article  ADS  Google Scholar 

  22. Svetsov, V.V. and Shuvalov, V.V., Silicate impact-vapor condensate on the Moon: Theoretical estimates versus geochemical data, Geochim. Cosmochim. Acta, 2016, vol. 173, pp. 50–63.

    Article  ADS  Google Scholar 

  23. Thompson, S.L. and Lauson, H.S., Improvements in the Chart D radiation-hydrodynamic CODE III: Revised analytic equations of state, in Report SC-RR-71 0714, Albuquerque: Sandia National Laboratory, 1972.

  24. Wunnemann, K. and Ivanov, B.A., Numerical modeling of the impact crater depth–diameter dependence in an acoustically fluidized target, Planet. Space Sci., 2003, vol. 51, pp. 831–845.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to the referee B.A. Ivanov for helpful comments.

Funding

The study was carried out as part of the state task of IAP RAS (project no. 0146-2020-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shuvalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, V.V. Release of Matter into the Atmosphere During the Fall of Ten-Kilometer Asteroids into the Ocean. Sol Syst Res 55, 97–105 (2021). https://doi.org/10.1134/S003809462101007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003809462101007X

Keywords:

Navigation