Skip to main content
Log in

Light scattering by morphologically complex objects and opposition effects (a review)

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Over the last decade, considerable progress has been achieved in the theory of light scattering by morphologically complex objects, which extends the potential of correct interpretation of photometric and polarimetric observations. This especially concerns the backscattering domain, where the opposition effects in brightness and polarization are observed. Although the equations of radiative transfer and weak localization (coherent backscattering) are rigorously valid only for sparse media, the results of exact computer solutions of the Maxwell equations for a macroscopic volume filled with randomly positioned particles show that their application area can be wider. In particular, the observations can be correctly interpreted if the packing density of particles in the medium reaches 20–30%. The recently suggested approximate solution of the coherent backscattering problem allowed interesting effects in the spectra of Saturn’s satellites to be explained. In the densely packed media, the effects that are impossible in the sparse media and caused by the near-field contribution can be observed. To calculate the characteristics of radiation reflected by such a medium, it is not sufficient to solve the radiative transfer and weak localization equations, even if they are written in a form without the far-zone limitations. Nowadays, the influence of the interaction of particles in the near field can be analyzed only for the restricted ensembles of particles. It shows that the substantial increase of the packing density essentially changes the phase functions of intensity and polarization in the backscattering domain. This allows the packing density of particles in the medium and their absorbing properties to be estimated from the shape of the phase curves measured. However, the task of quantitative interpretation of the measurements of radiation reflected by a densely packed medium, in terms of sizes of particles, their refractive index, and packing density, still remains unsolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avramchuk, V.V., Rozenbush, V.K., and Bul’ba, T.P., Photometric Study of the Major Satellites of Uranus, Astron. Vestn., 2007, vol. 41, no. 3, pp. 186–202.

    Google Scholar 

  • Babenko, V.A., Astafyeva, L.G., and Kuzmin, V.N., Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles, Berlin: Springer, 2003.

    Google Scholar 

  • Belskaya, I.N., Shkuratov, Yu.G., Efimov, Yu.S., et al., The F-Type Asteroids with Small Inversion Angles of Polarization, Icarus, 2005, vol. 178, pp. 213–221.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S., Radiative Transfer, Oxford: Oxford University Press, 1950.

    MATH  Google Scholar 

  • Doicu, A., Wriedt, T., and Eremin, Y.A., Light Scattering by Systems of Particles, Berlin: Springer, 2006.

    Book  MATH  Google Scholar 

  • Dollfus, A., Saturn’s Rings: Optical Reflectance Polarimetry, Icarus, 1996, vol. 124, pp. 237–261.

    Article  ADS  Google Scholar 

  • Dlugach, J.M. and Mishchenko, M.I., Diffuse and Coherent Backscattering of Polarized Light: Polarization Ratios for a Discrete Random Medium Composed of Nonspherical Particles, J. Quant. Spectrosc. Radiat. Transfer, 2007, vol. 106, pp. 21–32.

    Article  ADS  Google Scholar 

  • Draine, B.T., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Mishchenko, M.I., Hovenier, J.W., and Travis, L.D., Eds., San Diego: Academic, 2000, pp. 131–145.

    Chapter  Google Scholar 

  • Etemad, S., Thompson, R., Andrejco, W.J., et al., Weak Localization of Photons: Termination of Coherent Random Walks by Absorption and Confined Geometry, Phys. Rev. Lett., 1987, vol. 59, pp. 1420–1423.

    Article  ADS  Google Scholar 

  • French, R.G., Verbiscer, A., Salo, H., et al., Saturn’s Rings at True Opposition, Publ. Astron. Soc. Pacific, 2007, vol. 119, pp. 623–642.

    Article  ADS  Google Scholar 

  • Hapke, B., Biderectional Reflectance Spectroscopy: 4. The Extinction Coefficient and the Opposition Effect, Icarus, 1986, vol. 67, pp. 264–280.

    Article  ADS  Google Scholar 

  • Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge: Cambridge University Press, 1993.

    Book  Google Scholar 

  • Helfenstein, P., Currier, N., Clark, B., et al., Galileo Observations of Europa’s Opposition Effect, Icarus, 1998, vol. 135, pp. 41–63.

    Article  ADS  Google Scholar 

  • Ivanov, A.P., Loiko, A.V., and Dik, V.P., Rasprostranenie sveta v plotnoupakovannykh dispersnykh sredakh (Light Propagation in Densely-Packed Dispersed Media), Minsk: Nauka i Tekhnika, 1988.

    Google Scholar 

  • Kimura, H., Light Scattering Properties of Fractal Aggregates: Numerical Calculations by Superposition Technique and the Discrete-Dipole Approximation, J. Quant. Spectrosc. Radiat. Transfer, 2001, vol. 70, pp. 581–594.

    Article  ADS  Google Scholar 

  • Kiselev, N., Rosenbush, V., Velichko, F., and Zaitsev, S., Polarimetry of the Galilean Satellites and Jupiter near Opposition, J. Quant. Spectrosc. Radiat. Transfer, 2009, vol. 110, pp. 1713–1718.

    Article  ADS  Google Scholar 

  • Kolokolova, L., Buratti, B., and Tishkovets, V., Impact of Coherent Backscattering on the Spectra of Icy Satellites of Saturn and the Implications of Its Effects for Remote Sensing, Astrophys. J., 2010, vol. 711, pp. L71–L74.

    Article  ADS  Google Scholar 

  • Kuga, Y. and Ishimaru, A., Retroreflectance from a Dense Distribution of Spherical Particles, J. Opt. Soc. Am. A, 1984, vol. 1, pp. 831–835.

    Article  ADS  Google Scholar 

  • Lumme, K. and Bowell, E., Radiative Transfer in the Surfaces of Atmosphereless Bodies. I. Theory, Astron. J., 1981, vol. 86, pp. 1694–1704.

    Article  ADS  Google Scholar 

  • Lyot, B., Recherche sur la polarisation de la lumiere des planets et de quelques substances terrestres, Annales de l’Observatoire de Paris, Meudon, 1929, vol. 8, no. 1, pp. 1–161.

    Google Scholar 

  • Mackowski, D.W. and Mishchenko, M.I., Calculation of the T Matrix and the Scattering Matrix for Ensembles of Spheres, J. Opt. Soc. Am. A, 1996, vol. 13, pp. 2266–2278.

    Article  ADS  Google Scholar 

  • Mackowski, D.W., Direct Simulation of Scattering and Absorption by Particle Deposits, Proc. 10th Conf. on Electromagnetic and Light Scattering, Bodrum, 2007, pp. 113–116.

  • Mishchenko, M.I., Enhanced Backscattering of Polarized Light from Discrete Random Media: Calculations in Exactly the Backscattering Direction, J. Opt. Soc. Am. A, 1992, vol. 9, pp. 978–982.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., On the Nature of the Polarization Opposition Effect Exhibited by Saturn’s Rings, Astrophys. J., 1993, vol. 411, pp. 351–361.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Diffuse and Coherent Backscattering by Discrete Random Media. I. Radar Reflectivity, Polarization Ratios, and Enhancement Factors for a Half-Space of Polydisperse, Nonabsorbing and Absorbing Spherical Particles, J. Quant. Spectrosc. Radiat. Transfer, 1996, vol. 56, pp. 673–702.

    Article  ADS  Google Scholar 

  • Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Mishchenko, M.I., Hovenier, J.W., and Travis, L.D., Eds., San Diego: Academic, 2000a.

    Google Scholar 

  • Mishchenko, M.I., Luck, J.-M., and Nieuwenhuizen, T.M., Full Angular Profile of the Coherent Polarization Opposition Effect, J. Opt. Soc. Am. A, 2000b, vol. 17, pp. 888–891.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Vector Radiative Transfer Equation for Arbitrarily Shaped and Arbitrarily Oriented Particles: A Microphysical Derivation from Statistical Electromagnetics, Appl. Opt., 2002, vol. 41, pp. 7114–7134.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Travis, L.D., and Lacis, A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge University Press, 2002.

    Google Scholar 

  • Mishchenko, M.I., Microphysical Approach to Polarized Radiative Transfer: Extension to the Case of an External Observation Point, Appl. Opt., 2003, vol. 42, pp. 4963–4967.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Travis, L.D., and Lacis, A.A., Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge: Cambridge University Press, 2006.

    Google Scholar 

  • Mishchenko, M.I., Liu, L., and Mackowski, D.W., et al., Multiple Scattering by Random Particulate Media: Exact 3D Results, Opt. Express, 2007, vol. 15, pp. 2822–2836.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I. and Liu, L., Weak Localization of Electromagnetic Waves by Densely Packed Many-Particle Groups: Exact 3D Results, J. Quant. Spectrosc. Radiat. Transfer, 2007, vol. 106, pp. 616–621.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Multiple Scattering, Radiative Transfer, and Weak Localization in Discrete Random Media: Unified Microphysical Approach, Rev. Geophys., 2008, vol. 46, p. RG2003.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I. and Dlugach, J.M., Weak Localization of Electromagnetic Waves and Radar Polarimetry of Saturn’s Rings, Mon. Notic. Roy. Astron. Soc., 2008, vol. 389, pp. 1665–1674.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Dlugach, J.M., Liu, L., et al., Direct Solutions of the Maxwell Equations Explain Opposition Phenomena Observed for High-Albedo Solar System Objects, Astrophys. J., 2009, vol. 705, pp. L118–L122.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Tishkovets, V.P., Travis, L.D., et al., Electromagnetic Scattering by a Morphologically Complex Object: Fundamental Concepts and Common Misconceptions, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, pp. 671–692.

    Article  ADS  Google Scholar 

  • Muinonen, K., Light Scattering by Inhomogeneous Media: Backward Enhancement and Reversal of Linear Polarization, PhD Dissertation, Univ. of Helsinki, 1990.

  • Muinonen, K, Piironen, J, Shkuratov, Yu.G, et al., Asteroid Photometric and Polarimetric Phase Effects, in Asteroids III, Bottke, W.F., Jr, Cellino, A., Paolicchi, P., and Binzel, R.P., Eds., Tuscon: Univ. Arizona Press, 2002, pp. 123–138.

    Google Scholar 

  • Muinonen, K., Penttila, A., Cellino, A., et al., Asteroid Photometric and Polarimetric Phase Curves: Joint Linear-Exponential Modeling, Meteorit. Planet. Sci., 2009, vol. 44, no. 12, pp. 1937–1946.

    Article  ADS  Google Scholar 

  • Muinonen, K., Tyynel, J., Zubko, E., and Videen, G., Scattering Parameterization for Interpreting Asteroid Polarimetric and Photometric Phase Effects, Earth Planet. Space, 2010, vol. 62, pp. 47–52.

    Article  ADS  Google Scholar 

  • Nelson, R.M., Hapke, B.W., Smythe, W.D., and Spilker, L.J., The Opposition Effect in Simulated Planetary Regoliths. Reflectance and Circular Polarization Ratio Changes at Small Phase Angles, Icarus, 2000, vol. 147, pp. 545–558.

    Article  ADS  Google Scholar 

  • Petrova, E.V., Tishkovets, V.P., and Iokers, K., Polarization of Light Scattered by Solar System Bodies and the Aggregate Model of Dust Particles, Astron. Vestn., 2004, vol. 38, no. 4, pp. 354–371 [Solar Syst. Res. (Engl. Transl.), 2004, vol. 38, no. 4, p. 309].

    Google Scholar 

  • Petrova, E.V., Tishkovets, V.P., and Jockers, K., Modeling of Opposition Effects with Ensembles of Clusters: Interplay of Various Scattering Mechanisms, Icarus, 2007, vol. 188, no. 1, pp. 233–245.

    Article  ADS  Google Scholar 

  • Petrova, E.V., Tishkovets, V.P., and Jockers, K., Rebuttal to Comment on “Modeling of Opposition Effects with Ensembles of Clusters: Interplay of Various Scattering Mechanisms” by Elena V. Petrova, Victor P. Tishkovets, Klaus Jockers, 2007 [Icarus 188, 233–245], Icarus, 2008, vol. 194, pp. 853–856.

    Article  ADS  Google Scholar 

  • Petrova, E.V., Tishkovets, V.P., and Jockers, K., Interaction of Particles in the Near Field and Opposition Effects in Regolith-Like Surfaces, Solar Syst. Res., 2009, vol. 43, no. 2, p. 100.

    Article  ADS  Google Scholar 

  • Rosenbush, V., Kiselev, N., Avramchuk, V., and Mishchenko, M., Photometric and Polarimetric Opposition Phenomena Exhibited by Solar System Bodies, in Optics of Cosmic Dust, Videen, G. and Kocifaj, M., Eds., Dordrecht: Kluwer Academic, 2002, pp. 191–224.

    Google Scholar 

  • Rosenbush, V.K. and Kiselev, N.N., Polarization Opposition Effect for the Galilean Satellites of Jupiter, Icarus, 2005, vol. 179, pp. 490–496.

    Article  ADS  Google Scholar 

  • Rozenbush, V.K., Kiselev, N.N., Shakhovskoi, N.M., and Efimov, Yu.S., Research of Radiation Polarization of Selected High-Albedo Objects near Opposition, Izv. Krym. Astrofiz. Obs., 2006, vol. 103, pp. 219–231.

    Google Scholar 

  • Rozenbush, V.K., Properties of Scattered Radiation of Small Bodies in the Solar System, Doctoral Sci. (PhysMath.) Dissertation, Kiev: GAO NANU, 2007.

    Google Scholar 

  • Rosenbush, V.K., Shevchenko, V.G., Kiselev, N.N., et al., Polarization and Brightness Opposition Effects for the E-Type Asteroid 44 Nysa, Icarus, 2009, vol. 201, pp. 655–665.

    Article  ADS  Google Scholar 

  • Rutov, S.M., Kravtsov, Yu.A., and Tatarskii, V.I., Vvedenie v statisticheskuyu radiofiziku (Introduction into Statistical Radiophysics), part 2: Sluchainye polya (Random Fields), Moscow: Nauka, 1978.

    Google Scholar 

  • Shkuratov, Yu.G., On the Nature of Opposite Brightness Effect and Light Negative Polarization of Solid Space Surfaces, Astron. Tsirk., 1985, no. 1400, pp. 3–6.

  • Shkuratov, Yu.G., Interference Model of Light Negative Polarization, Scattered by Solid Surfaces of Celestial Bodies, Astron. Vestn., 1991, vol. 25, pp. 152–161.

    ADS  Google Scholar 

  • Shkuratov, Yu.G., Muinonen, K., Bowell, E., et al., A Critical Review of Theoretical Models of Negatively Polarized Light Scattered by Atmosphereless Solar System Bodies, Earth, Moon, Planets, 1994, vol. 65, pp. 201–246.

    Article  ADS  Google Scholar 

  • Shkuratov, Yu.G. and Ovcharenko, A.A., Polarization of Light Scattered by Surfaces with Complex Microstructure at Phase Angles 0.1°–3.5°, Solar Syst. Res., 2002a, vol. 36, no. 1, p. 62.

    Article  ADS  Google Scholar 

  • Shkuratov, Yu., Ovcharenko, A., Zubko, E., et al., The Opposition Effect and Negative Polarization of Structural Analog for Planetary Regoliths, Icarus, 2002b, vol. 159, pp. 396–416.

    Article  ADS  Google Scholar 

  • Shkuratov, Yu.G. and Grynko, Ye.S., Light Scattering by Media Composed of Semitransparent Particles of Different Shapes in Ray Optics Approximation: Consequences for Spectroscopy, Photometry, and Polarimetry of Planetary Regoliths, Icarus, 2005, vol. 173, pp. 16–28.

    Article  ADS  Google Scholar 

  • Thompson, D.T. and Lockwood, G.W., Photoelectric Photometry of Europa and Callisto 1976–1991, J. Geophys. Res., 1992, vol. 97, pp. 14761–14772.

    Article  ADS  Google Scholar 

  • Tishkovets, V.P., Backscattering of Light by Close-Packed System of Particles, Opt. Spectrosc., 1998, vol. 85, pp. 212–217.

    ADS  Google Scholar 

  • Tishkovets, V.P., Shkuratov, Yu.G., and Litvinov, P.V., Comparison of Collective Effects at Scattering by Randomly Oriented Cluster of Spherical Particles, J. Quant. Spectrosc. Radiat. Transfer, 1999, vol. 61, pp. 767–773.

    Article  ADS  Google Scholar 

  • Tishkovets, V.P., Multiple Scattering of Light by a Layer of Discrete Random Medium: Backscattering, J. Quant. Spectrosc. Radiat. Transfer, 2002a, vol. 72, pp. 123–137.

    Article  ADS  Google Scholar 

  • Tishkovets, V.P., Litvinov, P.V., and Tishkovets, S.V., Interference Effects in Backscattering of Light by a Layer of a Discrete Random Medium, Opt. Spectrosc., 2002b, vol. 93, no. 6, pp. 899.

    Article  ADS  Google Scholar 

  • Tishkovets, V.P. and Mishchenko, M.I., Coherent Backscattering of Light by a Layer of Discrete Random Medium, J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 86, pp. 161–180.

    Article  ADS  Google Scholar 

  • Tishkovets, V.P., Petrova, E.V., and Jockers, K., Optical Properties of Aggregate Particles Comparable in Size to the Wavelength, J. Quant. Spectrosc. Radiat. Transfer, 2004a, vol. 86, pp. 241–265.

    Article  ADS  Google Scholar 

  • Tishkovets, V, Litvinov, P, Petrova, E, et al., Backscattering Effects for Discrete Random Media, in Photopolarimetry in Remote Sensing, Videen, G., Yatskiv, Ya.S., and Mishchenko, M.I., Eds., Dordrecht: Kluwer, 2004b, pp. 221–242.

    Google Scholar 

  • Tishkovets, V.P., Incoherent and Coherent Backscattering of Light by a Layer of Densely Packed Random Medium, J. Quant. Spectrosc. Radiat. Transfer, 2007, vol. 108, pp. 454–463.

    Article  ADS  Google Scholar 

  • Tishkovets, V.P., Light Scattering by Closely Packed Clusters: Shielding of Particles by Each Other in the Near Field, J. Quant. Spectrosc. Radiat. Transfer, 2008, vol. 109, pp. 2665–2672.

    Article  ADS  Google Scholar 

  • Tishkovets, V.P. and Mishchenko, M.I., Approximate Calculation of Coherent Backscattering for Semi-Infinite Discrete Random Media, J. Quant. Spectrosc. Radiat. Transfer, 2009, vol. 110, pp. 139–145.

    Article  ADS  Google Scholar 

  • Tsang, L. and Kong, J.A., Scattering of Electromagnetic Waves: Advanced Topics, New York: Wiley, 2001.

    Book  Google Scholar 

  • Tseng, S.H., Taflove, A., Mainland, D., and Backman, V., Pseudospectral Time Domain Simulations of Multiple Light Scattering in Three-Dimensional Macroscopic Random Media, Radio Sci., 2006, vol. 41, p. RS4009.

    Article  ADS  Google Scholar 

  • van Albada, M.P. and Lagendijk, A., Observation of Weak Localization of Light in a Random Media, Phys. Rev. Lett., 1985, vol. 55, pp. 2692–2695.

    Article  ADS  Google Scholar 

  • Voshchinnikov, N.V., Optics of Cosmic Dust. Part I, Astrophys. Space Phys., 2004, vol. 12, pp. 1–182.

    Google Scholar 

  • West, R.A., Optical Properties of Aggregate Particles Whose Outer Diameter is Comparable to the Wavelength, Appl. Opt., 1991, vol. 30, no. 36, pp. 5316–5324.

    Article  ADS  Google Scholar 

  • Wolf, P. and Maret, G., Weak Localization and Coherent Backscattering of Photons in Disordered Media, Phys. Rev. Lett., 1985, vol. 55, pp. 2696–2699.

    Article  ADS  Google Scholar 

  • Yang, P. and Liou, K.N., Finite Difference Time Domain Method for Light Scattering by Nonspherical and Inhomogeneous Particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Mishchenko, M.I., Hovenier, J.W., and Travis, L.D., Eds., San Diego: Academic, 2000, pp. 173–221.

    Chapter  Google Scholar 

  • Yurkin, M.A. and Hoekstra, A.G., The Discrete Dipole Approximation: An Overview and Recent Developments, J. Quant. Spectrosc. Radiat. Transfer, 2007, vol. 106, pp. 558–589.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Petrova, V.P. Tishkovets, 2011, published in Astronomicheskii Vestnik, 2011, Vol. 45, No. 4, pp. 315–333.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, E.V., Tishkovets, V.P. Light scattering by morphologically complex objects and opposition effects (a review). Sol Syst Res 45, 304–322 (2011). https://doi.org/10.1134/S0038094611030038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094611030038

Keywords

Navigation