Skip to main content
Log in

Effect of Preliminary Cycling on the Acoustic Emission Characteristics of Structural 15Kh2GMF Steel

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The stages of changing the acoustic emission characteristics of 15Kh2GMF steel used for manufacturing oil-pump sucker rods is studied during tension before and after preliminary cyclic loading to various values of relative life. The revealed stages are shown to agree with the data of estimating the development of real damage by optical and digital microscopy. The acoustic parameters that can be diagnostic criteria characterizing a change in the steel state after preliminary cyclic loading have been determined, and their dependence on the relative number of cycles has been found. The changes in the form, spectrum, and median frequency of acoustic signals in steel samples are studied in the initial state and after preliminary cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. Wild and S. Hinckley, “Acousto–ultrasonic optical fiber sensors: overview and state of the art,” IEEE Sens. J. 8 (7), 1184–1193 (2008). https://doi.org/10.1109/JSEN.2008.926894

    Article  Google Scholar 

  2. F. Yu, Y. Okabe, Q. Wu, and N. Shigeta, “A novel method of identifying damage types in carbon fiber-reinforced plastic cross-ply laminates based on acoustic emission detection using a fiber-optic sensor,” Compos. Sci. Technol. 135 (September), 116–122 (2016). https://doi.org/10.1016/j.compscitech.2016.09.017

    Article  CAS  Google Scholar 

  3. P. Mazal, F. Vlasic, and V. Koula, “Use of acoustic emission method for identification of fatigue micro-crack creation,” Proc. Eng. Elsevier B. V. 133, 379–388 (2015). https://doi.org/10.1016/j.proeng.2015.12.667

    Article  CAS  Google Scholar 

  4. D. G. Aggelia, “Classification of cracking mode in concrete by acoustic emission parameters,” Mech. Res. Commun. 38 (3), 153–157 (2011). https://doi.org/10.1016/j.mechrescom.2011.03.007

    Article  Google Scholar 

  5. D. Triantis, “Acoustic emission monitoring of marble specimens under uniaxial compression. Precursor phenomena in the near-failure phase,” Proc. Struct. Integr. Elsevier B. V. 10, 11–17 (2018). https://doi.org/10.1016/j.prostr.2018.09.003

    Article  Google Scholar 

  6. L. R. Botvina and T. B. Petersen, “On the similarity of the acoustic and seismic regimes in fracture positions,” Doklady–Physics 46 (1), 56–59 (2001).

    Article  Google Scholar 

  7. Shiotani Tomoki, S. Yuyama, Z. W. Li, and M. Ohtsu, “Application of AE improved b-value to quantitative evaluation of fracture process in concrete materials,” J. Acoust. Emiss. 19, 118–133 (2001).

    Google Scholar 

  8. L. R. Botvina, T. B. Petersen, and M. R. Tyutin, “Estimation and the analysis of the b-value of acoustic emission” Zavod. Lab. 77 (3), 43–50 (2011).

    Google Scholar 

  9. K. Ono, “Structural integrity evaluation by means of acoustic emission,” Acoust. Emiss. Crit. Phenom., July, 13–27 (2008). https://doi.org/10.1201/9780203892220.pt1

  10. C. A. Middleton, J. P. McCrory, R. J. Greene, K. Holford, and E. A. Patterson, “Detecting and monitoring cracks in aerospace materials using post-processing of TSA and AE data,” Metals (Basel) 9 (7), 748 (2019). https://doi.org/10.3390/met9070748

  11. A. N. Ser’eznov, L. N. Stepanova, A. B. Tikhonravov, E. N. Kulikov, S. I. Kabanov, E. Yu. Lebedev, and A. E. Kareev, “Use of the acoustic emission method and tensometry for checking the residual strength of an airplane,” Defektoskopiya, No. 2, 28–35 (2008).

    Google Scholar 

  12. E. D. Pasiou and D. Triantis, “Correlation between the electric and acoustic signals emitted during compression of brittle materials,” Frat. Integr. Strutt. 11 (40), 41–51 (2017). https://doi.org/10.3221/IGF-ESIS.40.04

    Article  Google Scholar 

  13. O. V. Bashkov, “Analysis of the evolution defect structure of polycrystalline materials at various stages of loading by acoustic emission,” Doctoral Dissertation (Eng.), Komsomol’sk-on-Amur, GTU, 2012.

  14. O. V. Bashkov and N. A. Semashko, “Acoustic emission during a change in the deformation mechanisms of plastic structural materials,” Fiz. Mezomekh. 7 (6), 59–62 (2004).

    CAS  Google Scholar 

  15. A. A. Dmitriev, V. V. Polyakov, and E. A. Kolubaev, “Diagnostics of aluminum alloys with welds based on the analysis of acoustic emission signals,” Fund. Problems Sovrem. Materialoved. 14 (4), 458–463 (2017).

    Google Scholar 

  16. V. R. Skal’skii and I. M. Lyasota, “Peculiarities of acoustic emission signals during nucleation of a fatigue failure in a welded joint of Al–Cu–Mn aluminum alloy,” Defektoskopiya, No. 2, 79–86 (2014).

    Google Scholar 

  17. A. I. Kozinkina and L. M. Rybakova, “Inclusion of the features of the destruction kinetics when estimating the reliability and the life of structural materials,” Vestn. Mashinostr., No. 12, 27–29 (2003).

  18. A. V. Berezin, A. I. Kozinkina, and L. M. Rybakova, “Acoustic emission and destruction of a plastically deformed metal,” Defektoskopiya, No. 3, 9–14 (2004).

    Google Scholar 

  19. L. M. Rybakova, “Mechanical properties and destruction of a plastically deformed metal,” Vestn. Mashinostr., No. 3, 32–37 (1993).

  20. R. I. Shukyurov, V. A. Tetyuev, M. P. Krivov, and T. M. Khasaev, “Structural steel,” SU Patent 685710 A1, 1979.

  21. L. R. Botvina, M. R. Tyutin, V. P. Levin, A. V. Ioffe, Yu. S. Perminova, and D. V. Prosvirnin, “Mechanical and physical properties, fracture mechanisms, and the residual strength of 15Kh2GMF steel used for oil-pump sucker rods,” Deform. Razrushenie Mater., No. 9, 22–34 (2020). https://doi.org/10.31044/1814-4632-2020-9-22-34

  22. L. M. Rybakova, “Mechanical regularities of metal destruction upon volume and surface plastic deformations,” Probl. Mashinostr. Nadezhnost’ Mashin, No. 5, 113–123 (1998).

    Google Scholar 

  23. L. R. Botvina, M. R. Tyutin, T. B. Petersen, D. V. Prosvirnin, A. M. Morozov, and E. I. Kolokolov, “Residual strength of cyclically deformed stainless steel,” Deform. Razrushenie Mater., No. 11, 37–48 (2020). https://doi.org/10.31044/1814-4632-2019-11-37-48

  24. L. R. Botvina, T. B. Petersen, and M. R. Tyutin, “The acoustic gap as a diagnostic sign of prefracture,” Doklady–Physics 63 (4), 173–178 (2018).

    Article  CAS  Google Scholar 

  25. L. R. Botvina and M. R. Tyutin, “New acoustic parameter characterizing loading history effects,” Eng. Fract. Mech. 210, 358–366 (2019). https://doi.org/10.1016/j.engfracmech.201806.020

    Article  Google Scholar 

  26. O. V. Gusev, Acoustic Emission upon Deformation of Single Crystals of Refractory Metals (Nauka, Moscow, 1982).

    Google Scholar 

  27. A. M. Apasov, “Acoustic emission signals upon static loading of plane specimens of a high-strength steel,” Izv. Tomsk Polytech Univer. 316 (2), 32–41 (2010).

    Google Scholar 

  28. A. S. Tripalin and S. I. Builo, Acoustic Emission. Physicomechanical Aspects (RGU, Rostov-on-Don, 1986).

    Google Scholar 

  29. Y. Guo, S. Zhu, Y. Chen, D. Liu, and D. Li, “Acoustic emission-based study to characterize the crack initiation point of wood fiber/HDPE composites,” Polymers (Basel) 11 (4) (2019). https://doi.org/10.3390/polym11040701

  30. K. S. Han and K. H. Oh, “Acoustic emission as a tool of fatigue assessment,” Key Eng. Mater. 306308, 271–278 (2006).

  31. S. Bratarčuks, “Indication of destructive stage of epoxy PES-filled composite using the connected parameter of acoustic emission rate and the spectral characteristics of AE signals,” Trans. Aerosp. Eng. 4 (1), 29–38 (2017). https://doi.org/10.1515/tae-2017-0004

    Article  Google Scholar 

  32. L. R. Botvina, P. N. Shebalin, and I. B. Oparina, “A mechanism of temporal variation of seismicity and acoustic emission prior to macrofailure,” Doklady–Physics 46 (2), 119–123 (2001).

    Article  Google Scholar 

  33. A. P. Soldatenkov, L. R. Botvina, M. R. Tyutin, et al., “Residual strength, microhardness, and acoustic properties of low-carbon steel after cyclic loading,” J. Mach. Manuf. Reliab. 47 (6), 516–524 (2019). https://doi.org/10.3103/s105261881806002x

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation, project no. 19-19-00674.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. R. Botvina, M. R. Tyutin, A. I. Bolotnikov or T. B. Petersen.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botvina, L.R., Tyutin, M.R., Bolotnikov, A.I. et al. Effect of Preliminary Cycling on the Acoustic Emission Characteristics of Structural 15Kh2GMF Steel. Russ. Metall. 2021, 32–41 (2021). https://doi.org/10.1134/S0036029521010043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521010043

Keywords:

Navigation