Skip to main content
Log in

Formation of internal stress fields in rails during long-term operation

  • Structure and Properties of the Deformed State
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure and the internal stress fields in R65 rails withdrawn from operation because of side wear after long-term operation are studied and estimated. A high scalar dislocation density (higher by a factor of 1.5–2), the fragmentation of cementite lamellae, and the precipitation of carbide particles are detected in the layers adjacent to the roll surface. The stresses at the boundaries of the particles with the ferrite matrix can exceed the ultimate strength of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Glezer, “On the nature of ultrahigh plastic (megaplastic) deformation,” Izv. Ross. Akad. Nauk, Ser. Fiz. 71 (12), 1767–1776 (2007).

    Google Scholar 

  2. Yu. Ivanisenko and H. J. Fecht, “Microstructure modification in the surface layers of railway rails and wheels,” Steel Tech. 3 (1), 19–23 (2008).

    Google Scholar 

  3. E. A. Shur, Damage of Rails (Intekst, Moscow, 2012).

    Google Scholar 

  4. Yu. Ivanisenko, I. Maclaren, X. Souvage, R. Z. Valiev, and H. J. Fecht, “Shear-induced α → γ transformation in nanoscale Fe–C composite,” Acta Materialia 54, 1659–1669 (2006).

    Article  Google Scholar 

  5. V. G. Gavriljuk, “Decomposition of cementite in pearlitic steel due to plastic deformation,” Mater. Sci. Eng. A 345, 81–89 (2003).

    Article  Google Scholar 

  6. Yu. Ivanisenko, W. Lojkowski, and H. J. Fecht, “Stressand strain induced phase transformations in pearlitic steels,” Mater. Sci. Forum 539–543, 4681–4686 (2007).

    Article  Google Scholar 

  7. Yu. F. Ivanov, V. E. Gromov, O. A. Peregudov, K. V. Morozov, A. B. Yur’ev, et al., “Evolution of the structure–phase states in rails during long-term operation,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 4, 262–266 (2015).

    Article  Google Scholar 

  8. V. E. Gromov, K. V. Morozov, and Yu. F. Ivanov, “Analysis of structure phase states in a bulk hardened and head hardened rails,” AIP Conf. Proc. 1623, 191–194 (2014).

    Article  Google Scholar 

  9. V. E. Gromov, A. B. Yuriev, Yu. F. Ivanov, K. V. Morozov, S. V. Konovalov, K. V. Alsaraeva, and O. A. Semina, “Superior quality rails: structure-phase states and defect substructure,” Adv. Mater. Res. 1013, 127–132 (2014).

    Article  Google Scholar 

  10. V. E. Gromov, K. V. Morozov, Yu. F. Ivanov, K. V. Volkov, et al., “Formation of the gradients of structure, phase composition, and defect substructure in differentially quenched rails,” Rossiiskie Nanotekhnologii 9 (5–6), 59–62 (2014).

    Google Scholar 

  11. Yu. F. Ivanov, V. E. Gromov, A. B. Yur’ev, K. V. Volkov, K. V. Morozov, et al., “Formation of internal stress fields in rails,” Probl. Chern. Metallurg. Materialoved., No. 1, 79–84 (2014).

    Google Scholar 

  12. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985).

    Google Scholar 

  13. V. V. Rybin, Large Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  14. J. Eshelby, Continuum Theory of Dislocations (Izd. Inostr. Liter., Moscow, 1963).

    Google Scholar 

  15. V. M. Finkel’, Physical Foundations of Fracture Retardation (Metallurgiya, Moscow, 1977).

    Google Scholar 

  16. N. A. Koneva and E. V. Kozlov, “Nature of substructural strengthening,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 3–14 (1982).

    Google Scholar 

  17. V. I. Vladimirov, Physical Theory of Strength and Plasticity. Point Defects. Hardening and Recovery (LPI, Leningrad, 1975).

    Google Scholar 

  18. M. Shtremel’, Strength of Alloys. Part I. Lattice Defects (MISiS, Moscow, 1999).

    Google Scholar 

  19. N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, “Long-range stress fields, bending–torsion of a crystal lattice, and the stages of plastic deformation. Measurement methods and results,” in Proceedings of International Conference on New Methods in the Physics and Mechanics of Deformable Solids (TGU, Tomsk, 1990), pp. 83–93.

    Google Scholar 

  20. V. E. Gromov, E. V. Kozlov, V. I. Bazaikin, V. Ya. Tsellermaer, Yu. F. Ivanov, et al., Physics and Mechanics of Drawing and Forging (Nedra, Moscow, 1997).

    Google Scholar 

  21. Yu. F. Ivanov, V. V. Tsellermaer, L. N. Ignatenko, N. A. Popova, V. E. Gromov, and E. V. Kozlov, “Electron-diffraction analysis of the defect substructure and the stress fields near the a matrix/cementite interphase boundary,” Materialovedenie, No. 1, 40–44 (2001).

    Google Scholar 

  22. Yu. F. Ivanov, E. V. Kornet, E. V. Kozlov, and V. E. Gromov, Quenched Structural Steel: Structure and Hardening Mechanisms (SibGIU, Novokuznetsk, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gromov.

Additional information

Original Russian Text © O.A. Peregudov, K.V. Morozov, V.E. Gromov, A.M. Glezer, Yu.F. Ivanov, 2015, published in Deformatsiya i Razrushenie Materialov, 2015, No. 11, pp. 34–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peregudov, O.A., Morozov, K.V., Gromov, V.E. et al. Formation of internal stress fields in rails during long-term operation. Russ. Metall. 2016, 371–374 (2016). https://doi.org/10.1134/S0036029516040182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516040182

Navigation