Skip to main content
Log in

Al–Cu–Li and Al–Mg–Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

  • Promising Materials and Technologies
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al–Cu–Li and Al–Mg–Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al–Cu–Li alloys is shown to be significantly higher than in Al–Mg–Li alloys. Therefore, the role of the T1 phase in the hardening of Al–Cu–Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al–Cu–Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al–Cu–Li and Al–Mg–Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Lynch, R. J. H. Wanhill, R. T. Byrnes, and G. H. Bray, “Fracture toughness and fracture modes of aerospace aluminum–lithium alloys,” in Aluminum-Lithium Alloys. Processing, Properties and Applications (Elsevier, 2014), Ch. 13, pp. 416–456.

    Google Scholar 

  2. V. V. Shestov, V. V. Antipov, O. G. Senatorova, and V. V. Sidel’nikov, “Structural layered aluminum–glass plastics 1441-SIAL,” Metalloved. Term. Obrab. Met., No. 9, 28–31 (2013).

    Google Scholar 

  3. V. V. Antipov, N. I. Kolobnev, and L. B. Khokhlatova, “Development of Al–Li alloys and multistaep heat treatment schedules,” Metalloved. Term. Obrab. Met., No. 9, 5–11 (2013).

    Google Scholar 

  4. J. Czochralski and G. Welter, “Alloy of lithium and aluminum,” US Patent 1620081, 1927.

  5. J. Czochralski, “Aluminum alloy containing lithium,” US Patent 1 620 082, 1927.

    Google Scholar 

  6. I. N. Fridlyander, N. V. Shiryaeva, S. M. Ambartsumyan, T. A. Gorokhova, R. M. Gabidullin, N. G. Sidorov, N. A. Sorokin, and A. N. Kuznetsov, “Aluminum base alloys,” UK Patent 1172736, 1969.

  7. I. N. Fridlyander, K. V. Chuistov, A. L. Berezina, and N. I. Kolobnev, Aluminum–Lithium Alloys: Structure and Properties (Naukova Dumka, Kiev, 1992).

    Google Scholar 

  8. N. E. Prasad and T. R. Ramachandran, “Phase diagrams and phase reactions in Al–Li alloys,” in Aluminum-Lithium Alloys. Processing, Properties and Applications (Elsevier, 2014), Ch. 3, pp. 98–137.

    Google Scholar 

  9. Y. Ma, X. Zhou, G. E. Thompson, T. Hashimoto, P. Thomson, and M. Fowles, “Distribution of intermetallics in an AA 2099-T8 aluminum alloy extrusion,” Mater. Chem. Phys. 126, 46–53 (2011).

    Article  Google Scholar 

  10. M. A. Muñoz-Morris and D. G. Morris, “Severe plastic deformation processing of Al–Cu–Li alloy for enhancing strength while maintaining ductility,” Scripta Materialia 63, 304–307 (2010).

    Article  Google Scholar 

  11. M. A. Muñoz-Morris and D. G. Morris, “Microstructure control during severe plastic deformation of Al–Cu–Li and the influence on strength and ductility,” Mater. Sci. Eng. A 528, 3445–3454 (2011).

    Article  Google Scholar 

  12. Li Hongying, Tanga Yi, Zeng Zaide, Zheng Ziqiao, and Feng Zhenga, “Effect of ageing time on strength and microstructures of an Al–Cu–Li–Zn–Mg–Mn–Zr alloy,” Mater. Sci. Eng. A 498, 314–320 (2008).

    Article  Google Scholar 

  13. Nayan Niraj, Govind Bajargan, Nair K. Suseelan, M. C. Mittal, and K. N. Sudhakaran, “Studies on Al–Cu–Li–Mg–Ag–Zr alloy processed through vacuum induction melting (VIM) technique,” Mater. Sci. Eng. A 454–455, 500–507 (2007).

    Google Scholar 

  14. R. Yoshimura, T. J. Konno, E. Abe, and K. Hiraga, “Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys,” Acta Materialia 51, 2891–2903 (2003).

    Article  Google Scholar 

  15. R. Yoshimura, T. J. Konno, E. Abe, and K. Hiraga, “Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the T' and T1 phases,” Acta Materialia 51, 4251–4266 (2003).

    Article  Google Scholar 

  16. A. Deschamps, Ch. Sigli, T. Mourey, F. De Geuser, W. Lefebvre, and B. Davo, “Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy,” Acta Materialia 60, 1917–1928 (2012).

    Article  Google Scholar 

  17. T. Dorin, A. Deschamps, F. De Geuser, and Ch. Sigli, “Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy,” Acta Materialia 75, 134–146 (2014).

    Article  Google Scholar 

  18. Chen Zhongwei, Zhao Kai, and Fan Li, “Combinative hardening effects of precipitation in a commercial aged Al–Cu–Li–X alloy,” Mater. Sci. Eng. A 588, 59–64 (2013).

    Article  Google Scholar 

  19. E. A. Starke, “Historical development and present status of aluminum–lithium alloys,” in Aluminum–Lithium Alloys. Processing, Properties and Applications (Elsevier, 2014), Ch. 1, pp. 3–26.

    Google Scholar 

  20. Yi Lin, Ziqiao Zheng, Shichen Li, Xiang Kong, and Ye Han, “Microstructures and properties of 2099 Al–Li alloy,” Mater. Charact. 84, 88–99 (2013).

    Article  Google Scholar 

  21. A. Deschamps, B. Decreus, F. De Geuser, T. Dorin, and M. Weyland, “The influence of precipitation on plastic deformation of Al–Cu–Li alloys,” Acta Materialia 61, 4010–4021 (2013).

    Article  Google Scholar 

  22. O. A. Setyukov, “X-ray diffraction determination of the lattice parameters of the matrix and the d' phase (Al3Li) in Al–Li alloys,” Zavod. Lab. 75 (9), 41–46 (2009).

    Google Scholar 

  23. H.-J. Gudladt, J. Lendvai, and J. Schneider, “Precipitation strengthening and its influence on the mechanical behavior of cyclically deformed Al–Li alloys,” Acta Metall. 37 (12), 3327–3333 (1989).

    Article  Google Scholar 

  24. S. Ya. Betsofen, O. E. Osintsev, Fen Tsyan, and S. A. Masyukov, “Heterogeneity of the structure during rolling and annealing of Al alloys,” Metalloved. Term. Obrab. Met., No. 9, 14–19 (2004).

    Google Scholar 

  25. S. Katsikis, B. Noble, and S. J. Harris, “Microstructural stability during low temperature exposure of alloys within the Al–Li–Cu–Mg system,” Mater. Sci. Eng. A 485, 613–620 (2008).

    Article  Google Scholar 

  26. H. Y. Hunsicker, “Dimensional changes in heat treating aluminum alloys,” Metall. Trans. A 11 (5), 759–773 (1980).

    Article  Google Scholar 

  27. S. Ya. Betsofen, A. A. Il’in, O. E. Osintsev, and M. S. Betsofen, “Phase compositions of aluminum alloys and the volume effects of the phase transformations in them,” Russian Metallurgy (Metally), No. 6, 494–503 (2008).

    Google Scholar 

  28. S. Betsofen and M. Chizhikov, “Quantitative phase analysis of Al–Mg–Li and Al–Cu–Li alloys,” Mater. Sci. Forum 794–796, 915–920 (2014).

    Article  Google Scholar 

  29. S. Ya. Betsofen, V. V. Antipov, I. A. Grushin, M. I. Knyazev, L. B. Khokhlatova, and A. A. Alekseev, “Laws of the influence of the Al–Li alloy composition on the quantitative relationships of the d' (Al3Li), S1 (Al2MgLi), and T1 (Al2CuLi) phases,” Russian Metallurgy (Metally), No. 1, 70–77 (2015)

    Google Scholar 

  30. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1958).

    Google Scholar 

  31. J. Hirsch and T. Al-Samman, “Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications,” Acta Materialia 61, 818–843 (2013).

    Article  Google Scholar 

  32. R. Kapoor, N. Kumar, R. S. Mishra, C. S. Huskamp, and K. K. Sankaran, “Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy,” Mater. Sci. Eng. A 527, 5246–5254 (2010).

    Article  Google Scholar 

  33. Jia-Siang Wang, Chih-Chun Hsieh, Chi-Ming Lin, Erh-Chiang Chen, Che-Wei Kuo, and Weite Wu, “The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy,” Mater. Sci. Eng. A 605, 98–107 (2014).

    Article  Google Scholar 

  34. J. Z. Chen, L. Zhen, W. A. Shao, S. L. Dai, and Y. X. Cui, “Throughthickness texture gradient in AA 7055 aluminum alloy,” Mater.s Lett. 62, 88–90 (2008).

    Article  Google Scholar 

  35. L. Zhen, J. Chen, Sh. Yang, W. Shao, and Sh. Dai, “Development of microstructures and texture during cold rolling in AA 7055 aluminum alloy,” Mater. Sci. Eng. 504, 55–63 (2009).

    Article  Google Scholar 

  36. Yoon Jong-Hun, Cazacu Oana, Yoon Jeong Whan, and R. E. Dick, “Earing predictions for strongly textured aluminum sheets,” Int. J. Mech. Sci. 52, 1563–1578 (2010).

    Article  Google Scholar 

  37. Q. Contrepois, C. Maurice, and J. H. Driver, “Hot rolling textures of Al–Cu–Li and Al–Zn–Mg–Cu aeronautical alloys: experiments and simulations to high strains,” Mater. Sci. Eng. A 527, 7305–7312 (2010).

    Article  Google Scholar 

  38. A. J. Beaudoin, M. Obstalecki, W. Tayon, M. Hernquist, R. Mudrock, P. Kenesei, and U. Lienert, “In situ assessment of lattice strain in an Al–Li alloy,” Acta Materialia 61, 3456–3464 (2013).

    Article  Google Scholar 

  39. A. K. Vasudévan, M. A. Przystupa, and W. G. Eticke, Jr., “Effect of composition on crystallographic texture in hot-rolled Al–Li–Cu alloys,” Mater. Sci. Eng. A 208 (2), 172–180 (1996).

    Article  Google Scholar 

  40. Mondal Chandan, A. K. Singh, A. K. Mukhopadhyay, and K. Chattopadhyay, “Formation of a single, rotated-brass 110k556l texture by hot cross-rolling of an Al–Zn–Mg–Cu–Zr alloy,” Scripta Materialia 64, 446–449 (2011).

    Article  Google Scholar 

  41. S. Ya. Betsofen, V. I. Slavov, V. N. Matsnev, and O. S. Kostykova, “Texture and anisotropy of a plastic flow in low-carbon deep-drawing steels,” Russian Metallurgy (Metally), No. 5, 433–438 (2004).

    Google Scholar 

  42. I. N. Fridlyander, V. F. Shamrai, A. A. Babareko, N. I.Kolobnev, L. B. Khokhlatova, and I. V. Egiz, “Texture of a 1430 alloy (Al–Li–Mg–Cu) sheet and the anisotropy in its yield strength,” Izv. Ross. Akad. Nauk, Ser. Met., No. 2, 79–84 (1999).

    Google Scholar 

  43. M. Trinca, A. A. Avaliano, H. Garmestani, et al., “Effect of orientation on the mechanical properties and crystallographic texture of 2195 aluminum–lithium alloy,” Mater. Sci. Forum 331–337, 749–758 (2000).

    Google Scholar 

  44. I. N. Frindlyander, N. I. Kolobnev, L. B. Khokhlatova, T. P. Fedorenko, and L. V. Latushkina, “Effect of recrystallization in Al–Mg–Li–Cu alloys,” Tekhnologiya Legkikh Splavov, No. 5, 32–34 (1996).

    Google Scholar 

  45. I. N. Frindlyander, V. F. Shamrai, A. A. Babareko, and O. A. Setyukov, “Fracture and texture in semiproducts made of aluminum–lithium alloys,” Tekhnologiya Legkikh Splavov, No. 5, 5–9 (1996).

    Google Scholar 

  46. I. N. Frindlyander, V. F. Shamrai, A. A. Babareko, O. A. Setyukov, I. V. Egiz, and N. V. Ruch’eva, “Effect of heat treatment on the texture and the structure of 1420 alloy phases in a pressed thin profile and its mechanical properties,” Izv. Ross. Akad. Nauk, Ser. Met., No. 3, 125–130 (1996).

    Google Scholar 

  47. I. N. Frindlyander, A. A. Babareko, V. S. Sandler, and V. F. Shamrai, “Texture transformations in sheets of aluminum–lithium alloy during deformation and heating,” Perspectivnye Mater., No. 4, 19–24 (2000).

    Google Scholar 

  48. A. A. Il’in, V. V. Zakharov, M. S. Betsofen, O. E. Ocintsev, and T. A. Rostova, “Texture and the anisotropy of mechanical properties of an Al–Mg–Li–Zn–Sc alloy,” Russian Metallurgy (Metally), No. 5, 385–393 (2008).

    Google Scholar 

  49. I. N. Frindlyander, A. A. Babareko, V. F. Shamrai, et al., “Crystallographic anisotropy of the yield strength of textured alloy 1420 sheets,” Tekhnologiya Legkikh Splavov, No. 3–4, 5–12 (1994).

    Google Scholar 

  50. R. E. Shalin, I. L. Svetlov, E. B. Kachanov, et al., Nickel Superalloy Single Crystals (Mashinostroenie, Moscow, 1997).

    Google Scholar 

  51. V. V. Zakharov and T. D. Rostova, “Role of shear bands in aluminum–lithium alloy sheets,” Tekhnologiya Legkikh Splavov, No. 5, 35–39 (1996).

    Google Scholar 

  52. V. V. Zakharov and T. D. Rostova, “Effect of disperse Al3Li and Al3Sc particles cut by dislocations on the properties of aluminum alloys,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 4, 37–43 (2001).

    Google Scholar 

  53. I. L. Dillamore, J. G. Roberts, and A. C. Bush, “Occurrence of shear bands in heavily rolled cubic metals,” Metal Sci. 13 (2), 73–77 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Betsofen.

Additional information

Original Russian Text © S.Ya. Betsofen, V.V. Antipov, M.I. Knyazev, 2015, published in Deformatsiya i Razrushenie Materialov, 2015, No. 11, pp. 10–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betsofen, S.Y., Antipov, V.V. & Knyazev, M.I. Al–Cu–Li and Al–Mg–Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review). Russ. Metall. 2016, 326–341 (2016). https://doi.org/10.1134/S0036029516040042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516040042

Navigation