Skip to main content
Log in

Optimization of Controlling Parameters of Porous Silicon Synthesis Using Taguchi Design of Experiment

  • PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Porous silicon (PS) with high porosity is used in energy storage, solar photovoltaics, and sensing applications. The anodization method is the most widely used fabrication method since it is easy and economical. However, the method has various interdependent controlling parameters to fabricate PS, such as wafer resistivity, current density, hydrofluoric acid concentration, and anodization time. The parameters need to be optimized for a particular application to achieve the optimum porosity with fewer accouterments and time. The optimization can be carried out using the Taguchi design of experiment, which is based on the fractional factorial orthogonal array (OA). Mean output parameter graph, Signal to noise ratio, and interaction plot help to decide the interdependency and the optimized parameter for the desired output. The optimization achieved is validated by the factorial design of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. A. Salman, K. Omar, and Z. Hassan, Superlatt. Microstruct. 50, 647 (2011).

    Article  CAS  Google Scholar 

  2. A. Vu, Y. Qian, and A. Stein, Adv. Energy Mater. 2, 1056 (2012).

    Article  CAS  Google Scholar 

  3. J. H. Park, L. Gu, G. von Maltzahn, et al., Nat. Mater. 2009 (8), 331 (2009).

    Article  Google Scholar 

  4. Y. Liu, T. Lai, H. Li, et al., Small 8, 1392 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. P. Biswas, A. K. Karn, P. Balasubramanian, and P. G. Kale, Biosens. Bioelectron. 94, 589 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. C. W. Jang, D. H. Shin, and S.-H. Choi, J. Alloys Compd. 877, 160311 (2021).

  7. R. Fopase, S. Paramasivam, P. Kale, and B. Paramasivan, J. Environ. Chem. Eng. 8, 104266 (2020).

  8. N. Zilony-Hanin, M. Rosenberg, M. Richman, et al., Small 15, e1904203 (2019).

  9. R. Vercauteren, G. Scheen, J.-P. Raskin, and L. A. Francis, Sens. Actuat., A 318, 112486 (2021).

  10. P. G. Kale and C. S. Solanki, in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE, 2010), p. 3692.

  11. Y. Lai, J. R. Thompson, and M. Dasog, Chem. - Eur. J. 24, 7913 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. H. Jia, J. Zheng, J. Song, et al., Nano Energy 50, 589 (2018).

    Article  CAS  Google Scholar 

  13. F. Wang, L. Sun, W. Zi, et al., Chem. - Eur. J. 25, 9071 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. P. G. Kale, P. Sharma, and C. S. Solanki, J. Nano Res. 17, 13 (2012).

    Article  CAS  Google Scholar 

  15. E. Barsotti, S. P. Tan, S. Saraji, et al., Fuel 184, 344 (2016).

    Article  CAS  Google Scholar 

  16. M. K. Sahoo and P. Kale, Thin Solid Films 698, 137866 (2020).

  17. T. Kıvak, Measurement 50, 19 (2014).

    Article  Google Scholar 

  18. J. S. Oakland, Total Quality Management and Operational Excellence (Routledge, London, 2014).

    Book  Google Scholar 

  19. Y.-D. Chiang, H.-Y. Lian, S.-Y. Leo, et al., J. Phys. Chem. C 115, 13158 (2011).

    Article  CAS  Google Scholar 

  20. A.-H. Chiou, W.-F. Wu, D.-Y. Chen, and C.-Y. Hsu, J. Nanopart. Res. 15, (2013).

  21. S. Song, H. B. Cho, and H. T. Kim, J. Ind. Eng. Chem. 61, 281 (2018).

    Article  CAS  Google Scholar 

  22. H. Kim, J. Yun, M. Gao, et al., ACS Appl. Mater. Interfaces 12, 43614 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. R. A. Ismail, A. M. Alwan, and A. S. Ahmed, Appl. Nanosci. (Switzerland) 7, 9 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research is part of a project funded by DST-IIT Bombay Energy Storage Platform on Hydrogen (DST/TMD/MECSP/2K17/14 (G), 14-Feb-2019). The authors thankfully acknowledge the financial support extended by DST, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shivam Maurya, Sakti Prasanna Muduli, Suman Nayak or Paresh Kale.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S., Muduli, S.P., Nayak, S. et al. Optimization of Controlling Parameters of Porous Silicon Synthesis Using Taguchi Design of Experiment. Russ. J. Phys. Chem. 97, 749–755 (2023). https://doi.org/10.1134/S0036024423040295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423040295

Keywords:

Navigation