Skip to main content
Log in

Photocatalytic Degradation of Rifampicin: Influencing Parameters and Mechanism

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of rifampicin antibiotic in aqueous solution under solar irradiation is investigated using ZnO as photocatalyst. The effect of experimental parameters such as ZnO load, initial rifampicin concentration, pH and the presence of salts (NaCl, NaHCO3, and Na2SO4) is studied. The kinetic study using the Langmuir-Hinshelwood model is also reported. A photocatalytic degradation mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. E. Stumm-Zollinger and G. M. Fair, J. Water Pollut. Cont. Fed. 37, 1506 (1965).

    CAS  Google Scholar 

  2. H. H. Tabak and R. L. Bunch, Dev. Ind. Microbiol. 11, 376 (1970).

    Google Scholar 

  3. J. Ternes, T. A. Kreckel, and P. Mueller, Sci. Total Environ. 225, 99 (1999).

    Google Scholar 

  4. J. D. Cahill, E. T. Furlong, M. R. Burkhardt, D. Kolpin, and L. G. Anderson, J. Chromatogr. A 1041, 180 (2004).

    Article  Google Scholar 

  5. S. D. Kim, J. Cho, I. S. Kim, B. J. Vanderford, and S. A. Snyder, Water Res. 41, 1013 (2007).

    Article  CAS  Google Scholar 

  6. F. Sacher, M. Ehmann, S. Gabriel, C. Graf, and H.‑J. Brauch, J. Environ. Monit. 10, 664 (2008).

    Article  CAS  Google Scholar 

  7. K. Petit and R. Teysseire, Synthesis of Knowledge on the Presence of Medicinal Substances in Aquatic Environments.France and Some Countries (2013) [in French].

    Google Scholar 

  8. Y. Zhang, C. F. Marrs, C. Simon, and C. Xi, Sci. Total Environ. 407, 3702 (2009).

    Article  CAS  Google Scholar 

  9. N. M. Vieno, H. Härkki, T. Tuhkanen, and L. Kronberg, Environ. Sci. Technol. 41, 5077 (2007).

    Article  CAS  Google Scholar 

  10. D. Nasuhoglu, D. Berk, and V. Yargeau, Chem. Eng. J. 185–186, 52 (2012).

    Article  Google Scholar 

  11. A. Mendoza, M. López de Alda, S. González-Alonso, N. Mastroianni, D. Barceló, and Y. Valcárcel, Chemosphere 95, 255 (2014).

    Article  Google Scholar 

  12. Y. Vystavna et al., Water. Air. Soil Pollut. 223, 2111 (2012).

    Article  CAS  Google Scholar 

  13. C. Bojer, J. Schöbel, T. Martin, M. Ertl, H. Schmalz, and J. Breu, Appl. Catal. B: Environ. 204, 565 (2017).

    Article  Google Scholar 

  14. J. P. Besse, C. Kausch-Barreto, and J. Garric, Hum. Ecol. Risk Assess 14, 665 (2008).

    Article  CAS  Google Scholar 

  15. Y. Kaya et al., Chem. Eng. J. 322, 301 (2017).

    Article  Google Scholar 

  16. S. Foteinis, J. M. Monteagudo, A. Durán, and E. Chatzisymeon, Sci. Total Environ. 612, 612 (2018).

    Article  Google Scholar 

  17. H. Dong, Z. Qiang, J. Lian, and J. Qu, Water Res. 119, 90 (2017).

    Article  Google Scholar 

  18. I. Kim, N. Yamashita, and H. Tanaka, J. Hazard. Mater. 166, 1140 (2009).

    Google Scholar 

  19. L. Rizzo, S. Meric, M. Guida, D. Kassinos, and V. Belgiorno, Water Res. 43, 4070 (2009).

    Article  CAS  Google Scholar 

  20. A. Kaur, A. Umar, and S. K. Kansal, Appl. Catal. A: Gen. 510, 155 (2016).

    Article  Google Scholar 

  21. S. Salaeh et al., Chem. Eng. J. 304, 302 (2016).

    Article  Google Scholar 

  22. S. Kim et al., J. Hazard. Mater. 336, 32 (2017).

    Article  Google Scholar 

  23. L. Wang et al., Chem. Eng. J. 330, 634 (2017).

    Google Scholar 

  24. K. Gairaa and Y. Bakelli, J. Renewable Energy. 11 (2013).

  25. J. Perriot, É. Chambonnet, and A. Eschalier, Rev. Mal. Respir. 28, 542 (2011).

    Article  CAS  Google Scholar 

  26. P. S. Kaniou, K. Pitarakis, and I. Barlagianni, Chemosphere 60, 372 (2005).

    Article  CAS  Google Scholar 

  27. A. Douayar et al., Eur. Phys. J. Appl. Phys. 61, 10304 (2013).

    Article  Google Scholar 

  28. W. Zheng, R. Ding, X. Yan, and G. He, Mater. Lett. 201, 88 (2017).

    Google Scholar 

  29. Youji Li, Shuguo Sun, Mingyuan Ma, Yuzhu Ouyang, and Wenbin Yan, Chem. Eng. J. 142, 147 (2008).

    Article  CAS  Google Scholar 

  30. G. V. Morales, E. L. Sham, R. Cornejo, and E. M. Farfan Torres, Latin Am. Appl. Res. 42, 45 (2012)

    Google Scholar 

  31. M. Ahmad et al., J. Rare Earths 33, 255 (2015).

    Article  CAS  Google Scholar 

  32. E. S. Elmolla and M. Chaudhuri, Desalination 252, 52 (2010).

    Article  Google Scholar 

  33. N. L. Finčur et al., Chem. Eng. J. 307, 1115 (2017).

    Article  Google Scholar 

  34. D. M. Calandra, D. di Mauro, F. Cutugno, and S. di Martino, CEUR Workshop Proc. 1621, 43 (2016).

    Google Scholar 

  35. N. Barka and A. Assabbane, Phys. Chem. 41, 85 (2008).

    CAS  Google Scholar 

  36. T. Mcmahon, P. C. M. van Zijl, and A. A. Gilad, NIH Public Access 27, 320 (2011).

    Google Scholar 

  37. S. Ai, J. Li, Y. Yang, M. Gao, Z. Pan, and L. Jin, Anal. Chim. Acta 509, 237 (2004).

    Article  CAS  Google Scholar 

  38. T. Xian, H. Yang, L. Di, J. Ma, H. Zhang, and J. Dai, Nanoscale Res. Lett. 9, 327 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kais, H., Mezenner, N.Y., Trari, M. et al. Photocatalytic Degradation of Rifampicin: Influencing Parameters and Mechanism. Russ. J. Phys. Chem. 93, 2834–2841 (2019). https://doi.org/10.1134/S0036024419130119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419130119

Keywords:

Navigation