Skip to main content
Log in

Theoretical Study of Copper Acetonitrile Effects on Parr Functions Indices and Regioselectivity Using Density Functional Theory (DFT)

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a straightforward way for making covalent connections between building blocks containing various functional groups. It is widely used in organic synthesis, medicinal chemistry, polymer chemistry, and bioconjugation applications. Using copper acetonitrile as catalyst for click reactions (CuAAC) lead to a non-concerted reaction, and affect Parr functions indices to determine the polar sites, therefore predict the favorable regioisomer (1,4-regioisomer) and explain the contradiction obtained to the experimental results. The huge difference of activation barriers between catalyzed and uncatalyzed reaction indicate that is a selective reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Huisgen, Pure Appl. Chem. 61, 613 (1989).

    Article  CAS  Google Scholar 

  2. R. Huisgen, G. Szeimies, and L. Moebius, Chem. Ber. 100, 2494 (1967).

    Article  CAS  Google Scholar 

  3. C. W. Tornøe and M. Meldal, in Peptides 2001, Proceedings of the American Peptide Symposium (Am. Peptide Soc., Kluwer Academic, San Diego, 2001), p. 263.

  4. C. W. Tornøe, C. Christensen, and M. Meldal, J. Org. Chem. 67, 3057 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and B. K. Sharpless, Angew. Chem., Int. Ed. 41, 2596 (2002).

    Article  CAS  Google Scholar 

  6. L. Wolff, Ann. 394, 23 (1912); Ann. 394, 59 (1912); Ann. 394, 68 (1912).

    Google Scholar 

  7. W. Lwowski, in 1, 3- Dipolar Cycloaddition Chemistry, Ed. by A. Padwa (Wiley-Interscience, New York, 1984), Vol. 1, Chap. 5.

    Google Scholar 

  8. M. M. Majireck and S. M. Weinreb, J. Org. Chem. 71, 8680 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. I. Fleming, Frontiers Orbitals and Organic Chemical Reactions (Wiley, London, 1976).

    Google Scholar 

  10. R. G. Parr and R. G. Pearson, J. Am. Chem. Coc. 105, 7512 (1983).

    Article  CAS  Google Scholar 

  11. I. Marhraoui, E. M. El Hadrami, A. Ben-Tama, and M. El Asri, J. Marocain Chim. Heterocycl. 9, 59 (2010).

    CAS  Google Scholar 

  12. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  13. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  14. A. K. Nacereddine, W. Yahia, S. Bouacha, and A. Djerourou, Tetrahedron Lett. 51, 2617 (2010).

    Article  CAS  Google Scholar 

  15. R. G. Parr, L. von Szentpaly, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  16. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983);

    Article  CAS  Google Scholar 

  17. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  18. L. R. Domingo, P. Pérez, and J. Sáez, RSC Adv. 3, 1486 (2013).

  19. E. Chamorro, P. Pérez, and L. R. Domingo, Chem. Phys. Lett. 582, 141 (2013).

    Article  CAS  Google Scholar 

  20. L. R. Domingo, E. Chamorro, and P. Pérez, J. Org. Chem. 73, 4615 (2008);

    Article  CAS  PubMed  Google Scholar 

  21. L. R. Domingo and P. Pérez, Org. Biomol. Chem. 9, 7168 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. W. Kohn and L. Sham, J. Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  23. L. R. Domingo, E. Chamorro, and P. Perez, J. Org. Chem. 73, 4615 (2008);

    Article  CAS  PubMed  Google Scholar 

  24. P. Jaramillo, L. R. Domingo, E. Chamorro, and P. Perez, J. Mol. Struct.: THEOCHEM 865, 68 (2008).

    Article  CAS  Google Scholar 

  25. L. R. Domingo, M. Jose Aurell, P. Perez, and R. Contreras, J. Phys. Chem. A 106, 6871 (2002).

    Article  CAS  Google Scholar 

  26. M. Jose Aurell, R. Luis Domingo, P. Perez, and R. Contreras, Tetrahedron 60, 11503 (2004).

    Article  CAS  Google Scholar 

  27. F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, and V. V. Fokin, J. Am. Chem. Soc. 127, 210 2005.

    Article  CAS  PubMed  Google Scholar 

  28. E. J. Yoo, M. Ahlquist, I. Bae, K. B. Sharpless, V. V. Fokin, and S. Chang, J. Org. Chem. 73, 5520 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the “Association Marocaine des Chimistes Théoriciens” (AMCT) for its pertinent help concerning the programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adib Ghaleb.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adib Ghaleb, Aouidate, A., Lakhlifi, T. et al. Theoretical Study of Copper Acetonitrile Effects on Parr Functions Indices and Regioselectivity Using Density Functional Theory (DFT). Russ. J. Phys. Chem. 92, 2464–2471 (2018). https://doi.org/10.1134/S0036024418120038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418120038

Keywords:

Navigation