Skip to main content
Log in

Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Khadzhiev, N. N. Ezhova, and O. V. Yashina, Nanogeterog. Katal. 2 (1), 29 (2017).

    Google Scholar 

  2. S. N. Khadzhiev and A. Yu. Krylova, Pet. Chem. 51, 74 (2011).

    Article  CAS  Google Scholar 

  3. S. N. Khadzhiev, N. V. Kolesnichenko, and N. N. Ezhova, Pet. Chem. 56, 77 (2016).

    Article  CAS  Google Scholar 

  4. S. Ch. Baek, S. H. Kang, J. W. Bae, et al., Energy Fuels 25, 2438 (2011).

    Article  CAS  Google Scholar 

  5. Y. J. Lee, M. H. Jung, J. B. Lee, et al., Catal. Today 228 (6), 175 (2014).

    Article  CAS  Google Scholar 

  6. S. H. Kang, J. W. Bae, K. W. Jun, and H. S. Potdar, Catal. Commun. 9, 2035 (2008).

    Article  CAS  Google Scholar 

  7. H. W. Ham, M. H. Jeong, H. M. Koo, et al., React. Kinet., Mechanisms Catal. 116, 173 (2015).

    Article  CAS  Google Scholar 

  8. S. P. Naik, T. R. Ryu, V. Bui, et al., Chem. Eng. J. 167, 362 (2011).

    Article  CAS  Google Scholar 

  9. S. N. Khadzhiev, N. V. Kolesnichenko, N. N. Ezhova, et al., RF Patent No. 2547838 (2015).

    Google Scholar 

  10. S. M. Baghbanian, N. Rezaei, and H. Tashakkorian, Green Chem. 15, 3446 (2013).

    Article  CAS  Google Scholar 

  11. Y. Xu, Y. Song, Y. Suzuki, and Z.-G. Zhang, Catal. Sci. Technol. 3, 2769 (2013).

    Article  CAS  Google Scholar 

  12. G.-T. Vuong, V.-T. Hoang, T.-O. Do, and D.-T. Nguyen, Appl. Catal. A: Gen. 382, 231 (2010).

    Article  CAS  Google Scholar 

  13. Guang Wu, Wei Wu, Xin Wang et al., Microporous Mesoporous Mater. 180, 187 (2013).

    Article  CAS  Google Scholar 

  14. B. Fogel’, E. Klemm, M. Zaitts, et al., RF Patent No. 2266892 (2005).

    Google Scholar 

  15. B. Krauskhar-Kzarnetski and I. Veinvelt, RF Patent No. 2169044 (2001).

    Google Scholar 

  16. R. van Grieken, J. L. Sotelo, J. M. Menendez, and J. A. Melero, Microporous Mesoporous Mater. 39, 135 (2000).

    Article  Google Scholar 

  17. X. D. Wang, Ya. J. Wang, W. L. Yang, et al., Acta Chim. Sin. 63, 354 (2003).

    Google Scholar 

  18. R. R. Willis, D. E. Kuhl, and A. I. Benin, RF Patent No. 2377180 (2009).

    Google Scholar 

  19. G. T. Vuong and T. O. Do, Microporous Mesoporous Mater. 120, 310 (2009).

    Article  CAS  Google Scholar 

  20. Y. Hu, C. Liu, Y. Zhang, et al., Microporous Mesoporous Mater. 119, 306 (2009).

    Article  CAS  Google Scholar 

  21. C. Li, Y. Wang, B. Shi, et al., Microporous Mesoporous Mater. 117, 104 (2009).

    Article  CAS  Google Scholar 

  22. Z. Herceg, V. Lelas, M. Brncic, et al., Powder Technol. 139, 111 (2004).

    Article  CAS  Google Scholar 

  23. L. K. Kazantseva, T. S. Yusupov, T. Z. Lygina, et al., Glass Ceram. 70, 9 (2014).

    Article  Google Scholar 

  24. L. A. Belaya, V. P. Doronin, and T. P. Sorokina, Catal. Ind. 1, 237 (2009).

    Article  Google Scholar 

  25. N. V. Kolesnichenko, N. N. Ezhova, and O. V. Yashina, Pet. Chem. 56, 827 (2016).

    Article  CAS  Google Scholar 

  26. N. V. Kolesnichenko, L. E. Kitaev, Z. M. Bukina, N. A. Markova, V. V. Yushchenko, O. V. Yashina, G. I. Lin, and A. Ya. Rozovskii, Kinet. Catal. 48, 789 (2007).

    Article  CAS  Google Scholar 

  27. A. S. Rodionov, G. N. Shirobokova, G. N. Bondarenko, Yu. V. Pavlyuk, N. V. Kolesnichenko, T. I. Batova, E. N. Khivrich, and S. N. Khadzhiev, Pet. Chem. 53, 316 (2013).

    Article  CAS  Google Scholar 

  28. T. I. Goryainova, E. N. Biryukova, N. V. Kolesnichenko, and S. N. Khadzhiev, Pet. Chem. 51, 169 (2011).

    Article  CAS  Google Scholar 

  29. A. E. Baranchikov, V. K. Ivanov, and Yu. D. Tret’yakov, Russ. Chem. Rev. 76, 133 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yashina.

Additional information

Original Russian Text © N.V. Kolesnichenko, O.V. Yashina, N.N. Ezhova, G.N. Bondarenko, S.N. Khadzhiev, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 1, pp. 115–121.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, N.V., Yashina, O.V., Ezhova, N.N. et al. Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins. Russ. J. Phys. Chem. 92, 118–123 (2018). https://doi.org/10.1134/S0036024418010120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418010120

Keywords

Navigation