Skip to main content
Log in

Dynamics of carbide formation in iron-supported catalysts of the Fischer–Tropsch process promoted by copper and potassium

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetics of the formation of iron carbides during the activation of iron-coated catalyst for Fischer–Tropsch synthesis promoted by copper and potassium, and by carbon monoxide and syngas, is studied. It is established that the presence of copper lowers the initial temperature of hematite reduction to magnetite and leads to the formation of carbide in both CO and СО/Н2. Potassium slows the rate of magnetite formation, but it accelerates the formation of iron oxide. It is shown that the rate of carbide formation during magnetite reduction for catalysts is half that in the reaction of hematite reduction to magnetite in both CO and СО/Н2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-W. Jun, H.-S. Roh, K.-S. Kim, et al., Appl. Catal., A 259, 221 (2004).

    Article  CAS  Google Scholar 

  2. M. Claeys, H. Schulz, G. Schaub, et al., Appl. Catal., A 186, 201 (1999).

    Article  Google Scholar 

  3. V. R. R. Pendyala, U. M. Graham, and G. Jacobs, Catal. Lett. 144, 1704 (2014).

    Article  CAS  Google Scholar 

  4. R. A. Dictor and A. T. Bell, J. Catal. 97, 121 (1986).

    Article  CAS  Google Scholar 

  5. G. Blyholder, J. Phys. Chem. 68, 2772 (1964).

    Article  CAS  Google Scholar 

  6. M. E. Dry, T. Shingles, L. J. Boshoff, and G. J. Oosthuizen, J. Catal. 15, 190 (1969).

    Article  CAS  Google Scholar 

  7. F. Sette, J. Storh, E. B. Kollin, et al., Phys. Rev. Lett. 54, 935 (1985).

    Article  CAS  Google Scholar 

  8. R. J. O’Brien and B. H. Davis, Catal. Lett. 94, 1 (2004).

    Article  Google Scholar 

  9. H. Hayakawa, H. Tanaka, and K. Fujimoto, Appl. Catal., A 310, 24 (2006).

    Article  CAS  Google Scholar 

  10. K. Pansanga, N. Lohitharn, A. C. Y. Chien, et al., Appl. Catal., A 332, 130 (2007).

    Article  CAS  Google Scholar 

  11. D. B. Bukur and C. Sivaraj, Appl. Catal., A 231, 201 (2002).

    Article  CAS  Google Scholar 

  12. R. J. O’Brien, L. Xu, S. Bao, et al., Appl. Catal., A 196, 173 (2000).

    Article  Google Scholar 

  13. M. E. Dry, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 2004), p.533.

    Google Scholar 

  14. J. Xu and C. H. Bartholomew, J. Phys. Chem. B 109, 2392 (2005).

    Article  CAS  Google Scholar 

  15. M. C. Ribeiro, G. Jacobs, B. H. Davis, et al., J. Phys. Chem. C 114, 7895 (2010).

    Article  CAS  Google Scholar 

  16. A. F. H. Wielers, C. E. C. A. Hop, J. van Beijnum, et al., J. Catal. 121, 364 (1990).

    Article  CAS  Google Scholar 

  17. E. de Smit, F. M. F. de Groot, R. Blume, et al., Phys. Chem. Chem. Phys. 12, 667 (2010).

    Article  Google Scholar 

  18. P. A. Chernavskii, G. V. Pankina, and V. V. Lunin, Rus. Chem. Rev. 80, 579 (2011).

    Article  CAS  Google Scholar 

  19. P. A. Chernavskii, B. S. Lunin, R. A. Zakharyan, et al., Instrum. Exp. Tech. 57, 78 (2014).

    Article  CAS  Google Scholar 

  20. P. Malet and A. Caballero, J. Chem. Soc., Faraday Trans. 1 84, 2369 (1988).

    Article  CAS  Google Scholar 

  21. G. Ketteler, W. Ranke, and R. Schlogl, J. Catal. 212, 104 (2002).

    Article  CAS  Google Scholar 

  22. P. A. Chernavskii, V. O. Kazak, G. V. Pankina, et al., ChemCatChem 8, 390 (2016).

    Article  CAS  Google Scholar 

  23. A. Pineau, N. Kanari, and I. Gaballah, Therm. Acta 447, 89 (2006).

    Article  CAS  Google Scholar 

  24. H. L. Friedman, J. Polym. Sci. C 6, 183 (1964).

    Article  Google Scholar 

  25. P. W. Selwood, Magnetochemistry (Interscience, New York, 1948).

    Google Scholar 

  26. K. Cheng, V. V. Ordomsky, B. Legras, et al., Appl. Catal., A 502, 204 (2015).

    Article  CAS  Google Scholar 

  27. H. Wan, B. Wu, C. Zhang, et al., J. Mol. Catal. A 283, 33 (2008).

    Article  CAS  Google Scholar 

  28. J. R. Manning, Diffusion Kinetics for Atoms in Crystals (van Nostrand, Princeton, Toronto, 1968).

    Google Scholar 

  29. C. Li, I. Sayaka, F. Chisato, and K. Fujimoto, Appl. Catal., A 509, 123 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Kazak.

Additional information

Original Russian Text © V.O. Kazak, G.V. Pankina, P.A. Chernavskii, V.V. Lunin, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 5, pp. 778–787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazak, V.O., Pankina, G.V., Chernavskii, P.A. et al. Dynamics of carbide formation in iron-supported catalysts of the Fischer–Tropsch process promoted by copper and potassium. Russ. J. Phys. Chem. 91, 822–830 (2017). https://doi.org/10.1134/S0036024417050120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417050120

Keywords

Navigation