Skip to main content
Log in

A comparative DFT study of oxygen reduction reaction on mononuclear and binuclear cobalt and iron phthalocyanines

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction (ORR) catalyzed by mononuclear and planar binuclear cobalt (CoPc) and iron phthalocyanine (FePc) catalysts is investigated in detail by density functional theory (DFT) methods. The calculation results indicate that the ORR activity of Fe-based Pcs is much higher than that of Co-based Pcs, which is due to the fact that the former could catalyze 4e- ORRs, while the latter could catalyze only 2e- ORRs from O2 to H2O2. The original high activities of Fe-based Pcs could be attributed to their high energy level of the highest occupied molecular orbital (HOMO), which could lead to the stronger adsorption energy between catalysts and ORR species. Nevertheless, the HOMO of Co-based Pcs is the ring orbital, not the 3d Co orbital, thereby inhibiting the electron transfer from metal to adsorbates. Furthermore, compared with mononuclear FePc, the planar binuclear FePc has more stable structure in acidic medium and more suitable adsorption energy of ORR species, making it a promising non-precious electrocatalyst for ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chen, D. Higgins, A. Yu, L. Zhang, and J. Zhan., Energy Environ. Sci. 4, 3167 (2011).

    Article  CAS  Google Scholar 

  2. M. Lefèvre, E. Proietti, F. Jaouen, and J. P. Dodele., Science 324, 71 (2009).

    Article  Google Scholar 

  3. R. Bashyam and P. Zelena., Nature 443, 63 (2006).

    Article  CAS  Google Scholar 

  4. G. Wu, K. L. More, C. M. Johnston, and P. Zelena., Science 332, 443 (2011).

    Article  CAS  Google Scholar 

  5. X. Chen, F. Li, X. Wang, S. Sun, and D. Xi., J. Phys. Chem. C 116, 12553 (2012).

    Article  CAS  Google Scholar 

  6. L. Qu, Y. Liu, J. B. Baek, and L. Dai, ACS Nano 4, 1321 (2010).

    Article  CAS  Google Scholar 

  7. F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J. P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, and P. Zelena., Energy Environ. Sci. 4, 114 (2011).

    Article  CAS  Google Scholar 

  8. X. Chen, Q. Qiao, L. An, and D. Xi., J. Phys. Chem. C 119, 11493 (2015).

    Article  CAS  Google Scholar 

  9. R. Chen, H. Li, D. Chu, and G. Wan., J. Phys. Chem. C 113, 20689 (2009).

    Article  CAS  Google Scholar 

  10. L. N. Ramavathu, K. K. Maniam, K. Gopalram, and R. Chett., J. Appl. Electrochem. 42, 945 (2012).

    Article  CAS  Google Scholar 

  11. M. R. Hempstead, A. B. P. Lever, and C. C. Leznof., Can. J. Chem. 65, 2677 (1987).

    Article  CAS  Google Scholar 

  12. E. Vayner and A. B. Anderso., J. Phys. Chem. C 111, 9330 (2007).

    Article  CAS  Google Scholar 

  13. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijdersand, and T. Ziegle., J. Comput. Chem. 22, 931 (2001).

    Article  Google Scholar 

  14. C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerend., Theor. Chem. Acc. 99, 391 (1998).

    Google Scholar 

  15. Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com.

  16. C. Lee, W. Yang, and R. G. Par., Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  17. S. Kattel, P. Atanassov, and B. Kiefe., Phys. Chem. Chem. Phys. 15, 148 (2013).

    Article  CAS  Google Scholar 

  18. A. B. Anderson and T. V. Alb., J. Electrochem. Soc. 147, 4229 (2000).

    Article  CAS  Google Scholar 

  19. X. Chen, S. Sun, F. Li, X. Wang, and D. Xi., Molecules 18, 3279 (2013).

    Article  CAS  Google Scholar 

  20. T. Jacob and W. A. Goddar., ChemPhysChem 7, 992 (2006).

    Article  CAS  Google Scholar 

  21. Y. Sha, T. H. Yu, Y. Liu, B. V. Merinov, and W. A. Goddar., J. Phys. Chem. Lett. 1, 856 (2010).

    Article  CAS  Google Scholar 

  22. F. A. Uribe and T. A. Zawodzinsk., Electrochim. Acta 47, 3799 (2002).

    Article  CAS  Google Scholar 

  23. A. Lyalin, A. Nakayama, K. Uosaki, and T. Taketsug., Phys. Chem. Chem. Phys. 15, 2809 (2013).

    Article  CAS  Google Scholar 

  24. J. A. Keith and T. Jaco., Angew. Chem. Int. Ed. 49, 9521 (2010).

    Article  CAS  Google Scholar 

  25. J. Roques and A. B. Anderson, J. Fuel Cell Sci. Technol. 2, 86 (2005).

    Article  CAS  Google Scholar 

  26. Y. Sun, K. Chen, L. Jia, and H. L., Phys. Chem. Chem. Phys. 13, 13800 (2011).

    Article  CAS  Google Scholar 

  27. Z. Shi and J. Zhan., J. Phys. Chem. C 111, 7084 (2007).

    Article  CAS  Google Scholar 

  28. M. S. Liao and S. Scheine., J. Comput. Chem. 23, 1391 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, M., Yu, Z. et al. A comparative DFT study of oxygen reduction reaction on mononuclear and binuclear cobalt and iron phthalocyanines. Russ. J. Phys. Chem. 90, 2413–2417 (2016). https://doi.org/10.1134/S0036024416120323

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416120323

Keywords

Navigation