Skip to main content
Log in

Initiating nuclear-chemical transformations in native systems: Phenomenology

  • Biophysical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A possible mechanism of nuclear transformations in biological systems in vivo is proposed. Reasons why there is no ionizing radiation that could be detrimental to native systems during the corresponding nuclear reactions are given. It is established that the initial stage of these processes is associated with that of ATP hydrolysis, which initiates the action of the inner-shell electron of an atom participating in the reaction on its nucleus according to the mechanism of weak nuclear interaction. This results in the formation of a nucleus in a metastable state with a disturbed nucleon structure and a charge one unit lower than that of the initial nucleus. It is also assumed that the atom participating in the reaction is adsorbed near the mouth of one of the transport ATPases in the cell’s cytoplasmic membrane, and the reason for the initiating impact the electron has on the nucleus is due to the emergence of a local electric field formed during ATP hydrolysis near the ion channel of a donor–acceptor pair of charges that is opposite to the direction of the average membrane field. It is concluded that as a result of the key role of weak nuclear interaction in these processes, the energy of nuclear transformations in biological systems in vivo is released through the emission of neutrino–antineutrino pairs that are harmless to living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Vysotskii and A. A. Kornilova, Nuclear Fusion and Transmutation of Isotopes in Biological Systems (Mir, Moscow, 2003).

    Google Scholar 

  2. V. I. Vysotskii and A. A. Kornilova, Curr. Sci. 108, 636 (2015).

    CAS  Google Scholar 

  3. G. Levi, E. Foschi, B. Höistad, et al., Observation of Abundant Heat Production from a Reactor Device and of Isotopic Changes in the Fuel. http://amsacta.unibo.it/4084/1/LuganoReportSubmit.pdf.

  4. I. Savvatimova, Condens. Matter Nucl. Sci., No. 8, 1 (2011).

    Google Scholar 

  5. I. Savvatimova, in Proceedings of the 13th International Conference on Cold Fusion ICCF13, Sochy, Russia, 2007, p. 505.

    Google Scholar 

  6. I. Savvatimova, G. Savvatimov, and A. A. Kornilova, in Proceedings of the International Conference on Condensed Matter Nuclear Science, Sochy, Russia, June 25–July 1, 2007, Ed. by Y. Bazhutov (MATI, Moscow, 2008), p. 295.

  7. G. A. Shafeev, F. Bozon-Verduraz, and M. Robert, Phys. Wave Phenom. 15, 131 (2007).

    Article  Google Scholar 

  8. A. V. Simakin and G. A. Shafeev, Phys. Wave Phenom. 16, 268 (2008).

    Article  Google Scholar 

  9. E. V. Barmina, I. A. Sukhov, N. M. Lepekhin, et al., Quantum Electron. 43, 591 (2013).

    Article  Google Scholar 

  10. E. V. Barmina, P. G. Kuzmin, S. F. Timashev, and G. A. Shafeev, arXiv:1306.0830 [physics.gen-ph].

  11. S. F. Timashev, arXiv:1107.1799v7.

  12. S. F. Timashev, A. V. Simakin, and G. A. Shafeev, Russ. J. Phys. Chem. A 88, 1980 (2014).

    Article  CAS  Google Scholar 

  13. S. F. Timashev, Russ. J. Phys. Chem. A 89, 2072 (2015).

    Article  CAS  Google Scholar 

  14. S. Timashev, Int. J. Astrophys. Space Sci. 2, 88 (2014).

    Article  Google Scholar 

  15. M. Jung, F. Bosch, K. Beckert, et al., Phys. Rev. Lett. 69, 2164 (1992).

    Article  CAS  Google Scholar 

  16. F. Bosch, T. Faestermann, J. Friese, et al., Phys. Rev. Lett. 77, 5190 (1996).

    Article  CAS  Google Scholar 

  17. A. B. Migdal and V. P. Krainov, Approximation Methods in Quantum Mechanics (Nauka, Moscow, 1966; Benjamin, New York, 1969).

    Google Scholar 

  18. A. A. Sokolov, Yu. M. Loskutov, and I. M. Ternov, Quantum Mechanics (Prosveshchenie, Moscow, 1965) [in Russian].

    Google Scholar 

  19. V. Horsthemke and R. Lefevre, Noise-Induced Transitions (Springer, Berlin, 1983; Mir, Moscow, 1987).

    Google Scholar 

  20. R. Benzi, F. Sutera, and A. Vulpiani, J. Phys. A: Match. Gen. 14, L453 (1981).

    Article  Google Scholar 

  21. V. S. Anishchenko, T. E. Vadivasova, and V. V. Astakhov, Nonlinear Dynamics of Chaotic and Stochastic Systems (Saratov. Univ., Saratov, 1999) [in Russian].

    Google Scholar 

  22. R. Röhlsberger, K. Schlage, T. Klein, and O. Leupold, Phys. Rev. Lett. 95, 097601 (2005).

    Article  Google Scholar 

  23. S. A. Thomas, F. D. Abdalla, and O. Lahav, Phys. Rev. Lett. 105, 031301 (2010).

    Article  Google Scholar 

  24. V. M. Mostepanenko and N. Ya. Trunov, Sov. Phys. Usp. 31, 965 (1988).

    Article  Google Scholar 

  25. A. S. Davydov, Biology and Quantum Mechanics (Naukova Dumka, Kiev, 1979) [in Russian].

    Google Scholar 

  26. S. F. Timashev, Physical Chemistry of Membrane Processes (Ellis Horwood, Chichester, 1991).

    Google Scholar 

  27. C. Olsen, M. Picard, A.-M. L. Winther, C. Gyrup, et al., Nature 450, 1036 (2007).

    Article  Google Scholar 

  28. J. P. Morth, B. P. Pedersen, M. S. Toustrup-Jensen, et al., Nature 450, 1043 (2007).

    Article  CAS  Google Scholar 

  29. B. P. Pedersen, M. J. Buch-Pedersen, J. P. Morth, et al., Nature 450, 1111 (2007).

    Article  CAS  Google Scholar 

  30. D. C. Gadsby, Nature 450, 957 (2007).

    Article  CAS  Google Scholar 

  31. S. F. Timashev, Biophysics 53, 290 (2008).

    Article  Google Scholar 

  32. A. F. Vanin, Dinitrosyl Iron Complexes with Thiol–Containing Ligands. Physicochemistry, Biology, Medicine (Inst. Komp. Issled., Izhevsk, Moscow, 2015) [in Russian].

    Google Scholar 

  33. G. P. Shuvaeva, T. R. Rutkovskaya, and O. S. Korneeva, Vopr. Sovrem. Nauki Prakt., Nos. 10–12, 60 (2010).

    Google Scholar 

  34. J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys. Rev. Lett. 66, 2701 (1991).

    Article  CAS  Google Scholar 

  35. N. N. Tunitskii, V. A. Kaminskii, and S. F. Timashev, Methods of Physicochemical Kinetics (Khimiya, Moscow, 1972) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Timashev.

Additional information

Original Russian Text © S.F. Timashev, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 10, pp. 1563–1569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timashev, S.F. Initiating nuclear-chemical transformations in native systems: Phenomenology. Russ. J. Phys. Chem. 90, 2089–2095 (2016). https://doi.org/10.1134/S0036024416100253

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416100253

Keywords

Navigation