Skip to main content
Log in

Effect of copper nanoparticle aggregation on the thermal conductivity of nanofluids

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermal conductivity of water and glycerol is investigated via the transient hot wire method by adding small amounts of copper nanoparticles to solutions. At a 0.2% copper nanoparticle concentration, the thermal conductivity coefficient rises to 25% for the Cu + glycerol system, and to 35% for Cu + water system. A mechanism and mathematical model for describing the nanoparticle aggregation effect on the thermal properties of nanofluids are proposed, based on an analysis of the accumulated experimental data. It is shown that the enhancement of nanofluid thermal conductivity at low nanoparticle concentrations is directly proportional to their volume fraction and thermal conductivity coefficient, and (in accordance with the literature data) is inversely proportional to the radius and the aggregation ratio. The proposed model describes the existing experimental data quite well. The results from this work can be applied to the rapid cooling of electronic components, in the power engineering for ensuring the rapid and effective transfer of thermal energy in a nuclear reactor, and in the oil industry for thermal stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. (Clarendon, Oxford, 1881).

    Google Scholar 

  2. S. U. S. Choi, in Developments and Applications of Non-Newtonian Flows, Ed. by D. A. Siginer and H. P. Wang, Fluids Engineering Division, Vol. 231, Materials Division (AISME, New York, 1995), Vol. 66, p. 99.

  3. S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, ASME J. Heat Trans. 221, 280 (1999).

    Article  Google Scholar 

  4. J. A. Eastman, S. U. S. Choi, W. Yu, and L. J. Thompson, Appl. Phys. Lett. 78, 718 (2001).

    Article  CAS  Google Scholar 

  5. P. Hu, W. L. Shan, F. Yu, and Z. S. Chen, Int. J. Thermophys. 29, 1968 (2008).

    Article  CAS  Google Scholar 

  6. C. Zhi, Y. Bando, and D. Goldberg, ACS Nano 5, 6571 (2011).

    Article  CAS  Google Scholar 

  7. N. Rui, S. Zhou, and K. Xia, Phys. Fluids 23, 022005 (2011).

    Article  CAS  Google Scholar 

  8. A. Nasiri, M. Shariaty-Niasar, A. Rashidi, and R. Khodafarin, Int. J. Heat Mass Transfer 55, 1529 (2012).

    Article  CAS  Google Scholar 

  9. A. A. Avramenko, D. G. Blinov, I. V. Shevchuk, and A. V. Kuznetsov, Phys. Fluids 24, 092003 (2012).

    Article  CAS  Google Scholar 

  10. M. Kole and T. Dey, Appl. Therm. Eng. 9, 45 (2013).

    Article  CAS  Google Scholar 

  11. S. W. Lee, K. M. Kim, and I. C. Bang, Int. J. Heat Mass Transfer 65, 348 (2013).

    Article  CAS  Google Scholar 

  12. M. Mehrali, E. Sadeghinezhad, S. T. Latibari, S. Kazi, Meh. Mehrali, M. N. B. Mohd Zubir, and H. S. Metsselaar, Nanoscale Res. Lett. 9, 15 (2014).

    Article  CAS  Google Scholar 

  13. E. E. Michaelides, J. Non-Equilib. Thermodyn. 38, 1 (2013).

    Article  Google Scholar 

  14. W. J. Minkowycz, E. M. Sparrow, and J. P. Abraham, Nanoparticle Heat Transfer and Fluid Flow (CRC Press, Boca Raton, FL, 2012).

    Book  Google Scholar 

  15. C. Nie, W. H. Marlow, and Y. A. Hassan, Int. J. Heat Mass Transfer 51, 1342 (2008).

    Article  CAS  Google Scholar 

  16. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Appl. Phys. Lett. 89, 143119 (2006).

    Article  CAS  Google Scholar 

  17. X. Jie, B. Yu, and M. Yun, Chin. Phys. Lett. 23, 2819 (2006).

    Article  Google Scholar 

  18. F. Yongjin, Y. Boming, X. Peng, and Z. Mingqing, J. Phys. D: Appl. Phys. 40, 3164 (2007).

    Article  CAS  Google Scholar 

  19. W. Evans, R. Prasher, J. Fish, P. Meakin, and P. Phelan, Int. J. Heat Mass Transfer 51, 1431 (2008).

    Article  CAS  Google Scholar 

  20. N. Karthikeyan, P. John, and B. Raj, Mater. Chem. Phys. 109, 50 (2008).

    Article  CAS  Google Scholar 

  21. P. Warrier and A. Teja, Nanoscale Res. Lett. 6, 247 (2011).

    Article  CAS  Google Scholar 

  22. G. S. Srivastava, Appl. Nanosci., No. 2, 325 (2012).

    Article  CAS  Google Scholar 

  23. F. M. Ali, W. M. M. Yunus, and Z. A. Talib, Int. J. Phys. Sci. 8, 1442 (2013).

    CAS  Google Scholar 

  24. S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge, and R. G. Shimmin, J. Appl. Phys. 99, 084308 (2006).

    Article  CAS  Google Scholar 

  25. S. W. Hong, Y. T. Kang, C. Kleinstreuer, and J. Koo, Int. J. Heat Mass Transfer 54, 3448 (2011).

    Article  CAS  Google Scholar 

  26. C. Codreanu, N. I. Codreanu, and V. V. N. Obreja, Roman. J. Inf. Sci. Tech. 10, 215 (2007).

    Google Scholar 

  27. C. Kleinstreuer and Y. Feng, Nanoscale Res. Lett. 9, 1 (2011).

    Google Scholar 

  28. D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Phys. Rev. Lett. 93, 144301 (2004).

    Article  CAS  Google Scholar 

  29. S. K. Das, C. U. S. Choi, and H. E. Patel, Heat Trans. Eng. 27, 3 (2006).

    Article  CAS  Google Scholar 

  30. X. Q. Wang and A. S. Mujumbar, Int. J. Thermal Sci. 46, 1 (2007).

    Article  Google Scholar 

  31. M. Chandrasekar and S. A. Suresh, Heat Trans. Eng. 30, 1136 (2009).

    Article  CAS  Google Scholar 

  32. A. F. A. Alajmi, M. Algharaib, and R. C. Gharbi, in Proceedings of the SPE Middle East Oil and Gas Show and Conference, Bahrain, March 15–18, 2009.

    Google Scholar 

  33. E. Rosenbrand and I. L. Fabricius, in Proceedings of the SPE Europec/EAGE Annual Conference, Copenhagen, Denmark, June 4–, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Suleimanov.

Additional information

Original Russian Text © B.A. Suleimanov, H.F. Abbasov, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 2, pp. 240–248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleimanov, B.A., Abbasov, H.F. Effect of copper nanoparticle aggregation on the thermal conductivity of nanofluids. Russ. J. Phys. Chem. 90, 420–428 (2016). https://doi.org/10.1134/S0036024416020308

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416020308

Keywords

Navigation